EVALUASI KINERJA YOLO V8 DAN SSD DALAM DETEKSI REAL-TIME SAMPAH BOTOL PLASTIK BERBASIS DEEP LEARNING

Alven Safik Ritonga, Nurwahyudi Widhiyanta, Eka Alifia Kusnanti

Abstract


Sampah botol plastik merupakan salah satu fraksi paling dominan dalam timbunan sampah kota dan berkontribusi besar terhadap pencemaran lingkungan. Laporan global memperkirakan jutaan ton plastik masuk ke ekosistem perairan setiap tahun dan jumlah ini terus meningkat. Deteksi otomatis botol plastik menggunakan object detection berbasis deep learning menjadi pendekatan yang menjanjikan untuk mendukung aplikasi smart waste management seperti smart bin dan reverse vending machine. Penelitian ini mengevaluasi dan membandingkan kinerja YOLOv8 dan Single Shot MultiBox Detector (SSD) untuk deteksi real-time sampah botol plastik. Dataset yang digunakan merupakan gabungan 4.827 citra eksternal dan 251 citra internal, yang kemudian diaugmentasi menjadi lebih dari 10.000 sampel dan dianotasi untuk satu kelas bottle. Model YOLOv8 dilatih di Google Colab dengan GPU T4, sedangkan SSD diuji pada laptop berbasis CPU dalam dua skenario: (1) SSD-COCO menggunakan model pretrained umum, dan (2) SSD-Kustom yang di-fine-tune menggunakan dataset botol plastik. Hasil eksperimen menunjukkan bahwa YOLOv8 mencapai mAP@0,5 ≈ 0,984 untuk kelas botol dengan kurva precision–recall yang stabil. SSD-COCO menghasilkan sekitar 5 FPS di CPU, namun hanya mampu mendeteksi botol pada 4,07% dari 18.755 frame uji. Sebaliknya, SSD-Kustom mempertahankan FPS yang sebanding tetapi mendeteksi botol pada 100% dari 2.154 frame dengan rata-rata ≈171 deteksi per detik, yang mengindikasikan sensitivitas tinggi namun disertai gejala over-detection. Secara keseluruhan, YOLOv8 memberikan keseimbangan terbaik antara akurasi dan stabilitas, sedangkan SSD-Kustom berpotensi menjadi alternatif pada perangkat CPU-only setelah optimasi lanjutan terhadap confidence threshold dan non-maximum suppression.

Kata Kunci— Sampah botol plastik, deteksi objek, YOLOv8, SSD, deep learning, real-time.


ABSTRACT 

Plastic bottle waste is one of the most dominant fractions of municipal solid waste and contributes significantly to environmental pollution. Global reports estimate that millions of tons of plastic are discharged into aquatic ecosystems every year, with a steadily increasing trend. Automatic detection of plastic bottles using deep learning–based one-stage object detectors is a promising approach to support smart waste management applications such as smart bins and reverse vending machine. This study evaluates and compares the performance of YOLOv8 and Single Shot MultiBox Detector (SSD) for real-time plastic bottle detection. The dataset combines 4,827 external images and 251 internally acquired images, which are then augmented to more than 10,000 samples and annotated for a single bottle class. YOLOv8 is trained on Google Colab with a T4 GPU, while SSD is evaluated in two scenarios on a CPU laptop: (1) SSD-COCO using a generic pretrained model, and (2) SSD-Custom fine-tuned on the plastic bottle dataset. Experimental results show that YOLOv8 achieves mAP@0.5 0.984 for the bottle class with high precisionrecall stability. SSD-COCO reaches about 5 FPS on CPU but detects bottles in only 4.07% of 18,755 tested frames. In contrast, SSD-Custom maintains similar FPS, but detects bottles in 100% of 2,154 frames with an average of 171 detections per second, indicating strong sensitivity but also over-detection. Overall, YOLOv8 provides the best balance of accuracy and stability, whereas SSD-Custom becomes a viable alternative for CPU-only deployment after further optimization of confidence threshold and non-maximum suppression.

Keywords— Plastic bottle waste, object detection, YOLOv8, SSD, deep learning, real-time.

 


References


J. R. Jambeck et al., “Plastic waste inputs from land into the ocean,” Science (80-. )., vol. 347, no. 6223, pp. 764–768, 2015, doi: DOI: 10.1126/science.1260352.

UNEP (United Nations Environment Programme), From pollution to solution: a global assessment of marine litter and plastic pollution, vol. 237, no. 3169. 2021. [Online]. Available: https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.

W. L. B et al., “SSD : Single Shot MultiBox Detector,” Springer Int. Publ., vol. 1, pp. 21–37, 2016, doi: 10.1007/978-3-319-46448-0.

A. T. Sari and E. Nurlatifah, “Penerapan Convolutional Neural Network untuk Mengklasifikasikan Citra Sampah Organik dan Non Organik,” J. Ilm. Tek. Inform. dan Sist. Inf., vol. 14, no. 1, pp. 1–11, 2025.

N. L. Kirana, D. Kurnianingtyas, and Indriati, “A Deep Learning Approach to Plastic Bottle Waste Detection on the Water Surface using YOLOv6 and YOLOv7,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 6, pp. 18623–18630, 2024, doi: 10.48084/etasr.8592.

J. R. Yasiri, R. Prathivi, and S. Susanto, “Detection of Plastic Bottle Waste Using YOLO Version 5 Algorithm,” Sinkron, vol. 9, no. 1, pp. 20–30, 2025, doi: 10.33395/sinkron.v9i1.14242.

B. B. Kestane, E. Guney, and C. Bayilmis, “Real-time Recyclable Waste Detection Using YOLOv8 for Reverse Vending Machines,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 10, no. 2, pp. 345–358, 2024, doi: 10.26555/jiteki.v10i2.29208.

Y. Ren, Y. Li, and X. Gao, “An MRS-YOLO Model for High-Precision Waste Detection and Classification,” Sensors, vol. 24, no. 13, pp. 1–22, 2024.

D. N. Alfarizi, R. A. Pangestu, D. Aditya, M. A. Setiawan, and P. Rosyani, “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” J. Artif. Intel. dan Sist. Penunjang Keputusan, vol. 1, no. 1, pp. 54–63, 2023, [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk

F. Feng, Y. Hu, W. Li, and F. Yang, “Improved YOLOv8 algorithms for small object detection in aerial imagery,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 6, pp. 1–18, 2024, doi: 10.1016/j.jksuci.2024.102113.

S. N. Azzahra and D. Widhiantoro, “Analisa Komparatif Algoritma YOLO dan SSD untuk Sistem Deteksi Objek,” Sniv:Seminarnasionalinovasivokasi, vol. 4, no. 1, pp. 759–767, 2025.

L. Stephen Pieters, “Development of Automatic Waste Classification System Using Cnn Based Deep Learning To Support Smart Waste Management Pengembangan Sistem Klasifikasi Sampah Otomatis Menggunakan Deep Learning Berbasis Cnn Untuk Mendukung Smart Waste Management,” J. Inovtek Polbeng, vol. 10, no. 1, p. 1, 2025, doi: https://doi.org/10.35314/wst8mh87.

F. Ananta;, M. Kallista, and C. Setianingsih, “Deteksi Sampah Plastik Menggunakan Algoritma Yolov5 (You Only Look Once Version 5),” e-Proceeding Eng., vol. 11, no. 3, pp. 1695–1701, 2024.

D. Triyanto, M. Zidan, M. Wahyudi, and L. Pujiastuti, “Pengembangan Sistem Deteksi Objek Botol Real-Time dengan YOLOv8 untuk Aplikasi Vision,” Indones. J. Comput. Sci., vol. 3, no. 1, pp. 44–50, 2024, doi: https://doi.org/10.31294/ijcs.v3i1.6070.




DOI: https://doi.org/10.46576/syntax.v6i2.8020

Article Metrics

Abstract view : 10 times
PDF (Bahasa Indonesia) – 2 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

INDEXING:

Lisensi Creative Commons

Syntax: Journal of Software Engineering, Computer Science and Information Technology

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.