Eksplorasi pada Pemetaan Klasifikasi Radiograf Toraks Penyakit Paru-Paru Menggunakan Convolutional Neural Network (CNN)
Abstract
ABSTRAK
Abstrak— Radiograf toraks (CXR) merupakan alat penting dalam diagnosis penyakit paru, namun interpretasinya memerlukan keahlian khusus dan berpotensi menimbulkan bias. Penelitian ini bertujuan mengeksplorasi kinerja lima arsitektur Convolutional Neural Network (CNN) berbasis transfer learning, yaitu VGG16, ResNet50, EfficientNetB0, DenseNet121, dan MobileNetV2, dalam mengklasifikasikan lima kelas penyakit paru-paru: bacterial pneumonia, COVID-19, tuberculosis, viral pneumonia, dan normal. Dataset yang digunakan dilengkapi dengan preprocessing CLAHE-RGB, augmentasi data, serta penanganan ketidakseimbangan kelas menggunakan class weighting. Evaluasi dilakukan dengan empat skenario epoch (5, 10, 15, dan 30), serta menggunakan metrik akurasi, precision, recall, F1-score, dan confusion matrix. Hasil menunjukkan bahwa model VGG16 pada epoch ke-15 memberikan performa terbaik dengan akurasi 93,95% dan F1-score 0,94. Penelitian ini menunjukkan bahwa kombinasi preprocessing yang tepat dan arsitektur CNN yang sesuai mampu meningkatkan akurasi klasifikasi penyakit paru secara signifikan.
Kata Kunci— Convolutional Neural Network, Citra CXR, VGG16, Transfer Learning, CLAHE, Penyakit Paru.
ABSTRACT
Abstract— Chest radiography (CXR) is a vital tool in diagnosing pulmonary diseases, yet its interpretation often requires expert analysis and may involve subjectivity. This study explores the performance of five Convolutional Neural Network (CNN) architectures: VGG16, ResNet50, EfficientNetB0, DenseNet121, and MobileNetV2 for classifying five categories of lung conditions: bacterial pneumonia, COVID-19, tuberculosis, viral pneumonia, and normal. The dataset underwent preprocessing using CLAHE-RGB enhancement, data augmentation, and class balancing with class weighting. Each model was trained using four epoch scenarios (5, 10, 15, and 30) and evaluated based on accuracy, precision, recall, F1-score, and confusion matrix. The results indicate that VGG16 with 15 epochs achieved the best performance, reaching 93.95% accuracy and 0.94 F1-score. This study demonstrates that combining appropriate preprocessing techniques with suitable CNN architectures significantly enhances classification performance for pulmonary disease detection.
Keywords— Convolutional Neural Network, CXR images, VGG16, Transfer Learning, CLAHE, Lung Disease.
Full Text:
PDF (Bahasa Indonesia)References
M. H. Al-Sheikh, O. Al Dandan, A. S. Al-Shamayleh, H. A. Jalab, and R. W. Ibrahim, “Multi-class deep learning architecture for classifying lung diseases from chest X-Ray and CT images,” Sci. Rep., vol. 13, no. 1, pp. 1–14, 2023.
G. M. M. Alshmrani, Q. Ni, R. Jiang, H. Pervaiz, and N. M. Elshennawy, “A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images,” Alexandria Eng. J., vol. 64, pp. 923–935, 2023.
T. El Lel, M. Ahsan, and J. Haider, “Detecting COVID-19 from Chest X-rays Using Convolutional Neural Network Ensembles,” Computers, vol. 12, no. 5, pp. 1–22, 2023.
H. Çiğ, M. T. Güllüoğlu, M. B. Er, U. Kuran, and E. C. Kuran, “Enhanced Disease Detection Using Contrast Limited Adaptive Histogram Equalization and Multi-Objective Cuckoo Search in Deep Learning,” Trait. du Signal, vol. 40, no. 3, pp. 915–925, 2023.
H. Bhatt and M. Shah, “A Convolutional Neural Network ensemble model for Pneumonia Detection using chest X-ray images,” Healthc. Anal., vol. 3, no. March, p. 100176, 2023.
A. Jain, A. Bhardwaj, K. Murali, and I. Surani, “A Comparative Study of CNN, ResNet, and Vision Transformers for Multi-Classification of Chest Diseases,” pp. 1–8, 2024.
M. Usman, I. A. Nasir, R. Saeed, H. Nazir, and M. Asad, “A Deep Learning Approach for Multi-Label Chest X-ray Diagnosis Using DenseNet-121,” IET Conf. Proc., vol. 2024, no. 10, pp. 210–217, 2024.
S. Ashwini, J. R. Arunkumar, R. T. Prabu, N. H. Singh, and N. P. Singh, “Diagnosis and multi-classification of lung diseases in CXR images using optimized deep convolutional neural network,” Soft Comput., vol. 28, no. 7–8, pp. 6219–6233, 2024.
M. Jain, A. Shah, P. Sharma, and M. Campisi, “CAD : Computer-Aided Detection of Pneumonia Using Convolutional Neural Networks ( CNN ),” vol. 14, no. 5, pp. 87–112, 2025.
A. Kabiraj, T. Meena, P. B. Reddy, and S. Roy, Detection and Classification of Lung Disease Using Deep Learning Architecture from X-ray Images, vol. 13598 LNCS, no. December. Springer International Publishing, 2022.
K. Mridha, A. C. Barman, S. Biswas, S. Sarkar, S. Biswas, and M. A. Priyok, “Accuracy and Interpretability: Developing a Computer-Aided Diagnosis System for Pneumonia Detection in Chest X-Ray Images,” 2nd IEEE Int. Conf. Distrib. Comput. Electr. Circuits Electron. ICDCECE 2023, no. April, 2023.
D. E. Cahyani, A. D. Hariadi, F. F. Setyawan, L. Gumila, and S. Setumin, “COVID-19 classification using CNN-BiLSTM based on chest X-ray images,” Bull. Electr. Eng. Informatics, vol. 12, no. 3, pp. 1773–1782, 2023.
K. Kansal, T. B. Chandra, and A. Singh, “ResNet-50 vs. EfficientNet-B0: Multi-Centric Classification of Various Lung Abnormalities Using Deep Learning ‘session id: ICMLDsE.004,’” Procedia Comput. Sci., vol. 235, pp. 70–80, 2024.
M. Ali et al., “Pneumonia Detection Using Chest Radiographs with Novel EfficientNetV2L Model,” IEEE Access, vol. 12, no. February, pp. 34691–34707, 2024.
A. V. Ikechukwu, S. Murali, and B. Honnaraju, “COPDNet: An Explainable ResNet50 Model for the Diagnosis of COPD from CXR Images,” 2023 IEEE 4th Annu. Flagsh. India Counc. Int. Subsections Conf. Comput. Intell. Learn. Syst. INDISCON 2023, no. October, pp. 1–7, 2023.
R. Pramanik, S. Dey, S. Malakar, S. Mirjalili, and R. Sarkar, “TOPSIS aided ensemble of CNN models for screening COVID-19 in chest X-ray images,” Sci. Rep., vol. 12, no. 1, pp. 1–19, 2022.
S. M. Anwar et al., “SPCXR: Self-supervised Pretraining using Chest X-rays Towards a Domain Specific Foundation Model,” pp. 1–19, 2022.
A. Mirzaee and P. Ghorbanzadeh, “Performance Evaluation and Comparison of Transfer Learning Models in Chest X-Ray Image Classification Using Deep Neural Networks,” vol. 7, no. 4, pp. 33–40, 2025.
S. Hamal, B. K. Mishra, R. Baldock, W. Sayers, T. N. Adhikari, and R. M. Gibson, “A comparative analysis of machine learning algorithms for detecting COVID-19 using lung X-ray images,” Decis. Anal. J., vol. 11, no. February, p. 100460, 2024.
A. Mirugwe, L. Tamale, and J. Nyirenda, “Improving Tuberculosis Detection in Chest X-ray Images through Transfer Learning and Deep Learning: A Comparative Study of CNN Architectures,” vol. 6, pp. 1–15, 2024.
K. Subramaniam et al., “A comprehensive review of analyzing the chest X-ray images to detect COVID-19 infections using deep learning techniques,” Soft Comput., vol. 27, no. 19, pp. 14219–14240, 2023.
M. Nahiduzzaman et al., “Parallel CNN-ELM: A multiclass classification of chest X-ray images to identify seventeen lung diseases including COVID-19,” Expert Syst. Appl., vol. 229, no. PA, p. 120528, 2023.
R. I. Majumder, “Efficient Classification of Pulmonary Pneumonia and Tuberculosis Alongside Normal and Non-X-ray Images with Minimal Resources Section 1 : Abstract & Introduction,” 2025.
U. Ejaz, A. Luz, and R. Wasiu, “Comparison of CNN Architectures for COVID-19 Detection in Chest X-rays,” no. October 2023, 2025.
M. K. Nallakaruppan, S. Ramalingam, S. R. K. Somayaji, and S. B. Prathiba, “Comparative Analysis of Deep Learning Models Used in Impact Analysis of Coronavirus Chest X-ray Imaging,” Biomedicines, vol. 10, no. 11, pp. 1–20, 2022.
DOI: https://doi.org/10.46576/syntax.v6i2.7296
Article Metrics
Abstract view : 0 timesPDF (Bahasa Indonesia) – 0 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Syntax: Journal of Software Engineering, Computer Science and Information Technology
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.














