ANALISIS KOMPARATIF KLASIFIKASI MACHINE LEARNING UNTUK MEMPREDIKSI STUNTING PADA ANAK USIA DI BAWAH LIMA TAHUN

Yudhi Fajar Saputra, Mahmoud Ahmad Al-Khasawneh, Milkhatun Milkhatun, Ni Wayan Wiwin Asthiningsih, Sitti Rahmah

Abstract


Stunting merupakan salah satu permasalahan kesehatan masyarakat yang bisa berdampak jangka panjang terhadap kualitas sumber daya manusia di Indonesia. Deteksi dini terhadap status stunting anak usia di bawah lima tahun menjadi langkah dalam mencegah gangguan pertumbuhan kronis akibat stunting, sehingga penelitian ini bertujuan untuk membangun model klasifikasi status stunting dengan memanfaatkan pendekatan data mining menggunakan algoritma Decision Tree dan Random Forest. Data yang digunakan diperoleh dari hasil survei terhadap ibu yang memiliki anak dibawah umur lima tahun dengan sejumlah 193 responden, data tersebut mencakup variabel antropometri dan sosial ekonomi, seperti tinggi badan, berat badan, usia anak, pendidikan orang tua, pendapatan keluarga, dan urutan kelahiran. data tersebut diproses melalui tahapan Knowledge Discovery in Databases (KDD) meliputi seleksi atribut, imputasi, encoding, dan klasifikasi melalui proses permodelan data mining, selanjutnya evaluasi dilakukan dengan metrik klasifikasi Classification Accuracy(CA) dan Area Under the Curve (AUC) dari kurva Receiver Operating Characteristic (ROC). Hasil penelitian menunjukkan bahwa model Random Forest memiliki performa lebih baik dibandingkan Decision Tree dengan nilai CA 71% dan AUC 0.74. dibandingkan Decision Tree dengan nilai CA 67% dan AUC 0.68. Peneliti berharap bahwa Model prdiksi ini berpotensial dapat digunakan sebagai sistem deteksi dini stunting berbasis data atau sebagai rujukan untuk penelitian berikutnya

Kata Kunci—Stunting, Machine Learning, Random Forest, Decision Tree, Classification Model, ROC Curve.

 

ABSTRACT

Stunting is one of the public health issues that can have long-term impacts on the quality of human resources in Indonesia. Early detection of stunting status among children under five years of age is a critical step in preventing chronic growth disorders. Therefore, this study aims to develop a classification model for stunting status using a data mining approach with Decision Tree and Random Forest algorithms. The dataset was obtained from a survey of 193 mothers with children under five, encompassing anthropometric and socioeconomic variables such as height, weight, child’s age, parental education, family income, and birth order. The data were processed through the stages of Knowledge Discovery in Databases (KDD), including attribute selection, imputation, encoding, and classification modeling. The model performance was evaluated using classification metrics: Classification Accuracy (CA) and the Area Under the Curve (AUC) from the Receiver Operating Characteristic (ROC) curve. The results show that the Random Forest model outperformed the Decision Tree, achieving a CA of 71% and an AUC of 0.74, compared to the Decision Tree with a CA of 67% and an AUC of 0.68. This predictive model is expected to be useful as a data-driven early detection system for stunting or serve as a reference for future research.

Keywords—Stunting, Machine Learning, Random Forest, Decision Tree, Classification Model, ROC Curve.


References


W. H. O. (WHO), “Child malnutrition: Stunting among children under 5 years of age,” 2024.

UNICEF, WHO, and W. Bank, “Joint child malnutrition estimates 2021,” 2024.

Unknown, “Parental stature..., 24.4% stunting in 2021,” Asia Pac J Clin Nutr, 2018.

W. Bank, “Stunting prevalence in Indonesia 2000–2020,” 2020.

K. et al., “Indonesia has the second highest stunting rate…,” ScienceDirect, 2024.

Wikipedia, “Stunted growth,” 2025.

A. Pratama and others, “Comparison of Machine Learning Algorithms for Predicting Stunting Prevalence in Indonesia,” SISFOKOM J. Inf. Comput. Syst., vol. 13, no. 2, pp. 200–209, Jun. 2024.

M. S. Haris, M. Anshori, and A. N. Khudori, “Prediction of Stunting Prevalence in East Java Province with Random Forest Algorithm,” J. Teknol. Inf. (JUTIF), vol. 4, no. 1, pp. 11–13, Feb. 2023.

S. A. Hemo and M. I. Rayhan, “Classification tree and Random Forest model to predict under-five malnutrition in Bangladesh,” Biom. Biostat. Int. J., vol. 10, no. 3, pp. 116–123, 2021.

V. R. Saragih and others, “Comparative analysis of supervised machine learning methods in predicting stunting in North Sumatra,” J. OSCExp., Jun. 2025.

Juwariyem, S. Sriyanto, S. Lestari, and C. Chairani, “Prediction of Stunting in Toddlers Using Bagging and Random Forest Algorithms,” Sinkron, vol. 8, no. 2, pp. 947–956, Apr. 2024.

A. D. Restu, Y. S. Putri, and R. P. Yanti, “Penerapan Algoritma Decision Tree C4.5 untuk Klasifikasi Status Gizi Balita,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp. 1567–1575, Sep. 2023.

F. Kusuma, M. Izzati, and S. Rahmawati, “Prediksi Status Stunting Menggunakan Decision Tree CART,” J. Inform. Kesehatan, vol. 4, no. 1, pp. 25–32, Jan. 2022.

R. Sartika and M. A. Hakim, “Penerapan Decision Tree J48 dalam Sistem Klasifikasi Gizi Anak,” Jurnal Informatika Medis Indonesia, vol. 9, no. 2, pp. 73–80, Dec. 2021.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowledge discovery in databases,” AI Mag, vol. 17, no. 3, pp. 37–54, 1996.

M. Fayyad, “The KDD process for extracting useful knowledge from volumes of data,” Commun ACM, vol. 39, no. 11, pp. 27–34, 1996.

UNICEF, Conceptual Framework Child Nutrition. New York, NY 10017, USA, 2021.

W. H. Organization, Guideline: assessing and managing children at primary healthcare facilities to prevent overweight and obesity in the context of the double burden of malnutrition. New York, 2017.

K. Al-Jabery, T. Obafemi-Ajayi, G. Olbricht, and others, Computational Learning Approaches to Data Analytics in Biomedical Applications. Academic Press, 2019.

U. Pujianto, A. P. Wibawa, M. I. Akbar, and others, “K-nearest neighbour (k-nn) based missing data imputation,” in 2019 5th International Conference on Science in Information Technology (ICSITech), IEEE, 2019, pp. 83–88.

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, 4th ed. Burlington, MA: Morgan Kaufmann, 2016.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. San Francisco: Morgan Kaufmann, 2011.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to Knowledge Discovery in Databases,” AI Mag, vol. 17, no. 3, pp. 37–54, 1996.

L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001.

R. Quinlan, “Induction of decision trees,” Mach Learn, vol. 1, no. 1, pp. 81–106, 1986.

P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Boston: Addison-Wesley, 2006.

T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit Lett, vol. 27, no. 8, pp. 861–874, 2006.

W. H. Organization, Essential Nutrition Actions: Mainstreaming Nutrition Through the Life-Course. Geneva: World Health Organization, 2019.

W. H. Organization, Child Growth Standards: Length/Height-for-Age. Geneva: World Health Organization, 2006.

P. R. Indonesia, “Peraturan Presiden Nomor 72 Tahun 2021 tentang Percepatan Penurunan Stunting,” 2021, Jakarta, Indonesia.

S. W. P. RI, “Rencana Aksi Nasional Percepatan Penurunan Stunting Indonesia (RAN-PASTI) 2021–2024,” 2021, Jakarta.




DOI: https://doi.org/10.46576/syntax.v6i1.6852

Article Metrics

Abstract view : 11 times
PDF (Bahasa Indonesia) – 1 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

INDEXING:

Lisensi Creative Commons

Syntax: Journal of Software Engineering, Computer Science and Information Technology

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.