INTEGRASI MACHINE LEARNING DAN ANALISIS SPASIAL UNTUK PREDIKSI WILAYAH RAWAN TUBERKULOSIS DI PROVINSI SUMATERA UTARA

Fanny Ramadhani, Said Iskandar Al-Idrus, Dian Septiana, Arnita Arnita, Diah Retno Wahyuningrum

Abstract


Tuberkulosis (TBC) masih menjadi masalah kesehatan masyarakat yang serius di Provinsi Sumatera Utara. Prevalensi tinggi terutama di daerah padat penduduk dan terbatasnya akses layanan kesehatan menjadi tantangan utama dalam pengendalian TBC. Penelitian ini bertujuan untuk memprediksi wilayah rawan TBC dengan mengintegrasikan algoritma machine learning dan analisis spasial. Data sekunder diperoleh dari Sistem Informasi Tuberkulosis Nasional (SITB), Badan Pusat Statistik (BPS), dan shapefile administrasi wilayah kabupaten/kota di Sumatera Utara. Variabel prediktor meliputi kepadatan penduduk, status gizi, jumlah fasilitas kesehatan, tingkat kemiskinan, kualitas hunian, dan cakupan imunisasi. Model dikembangkan menggunakan algoritma Random Forest, sementara analisis spasial dilakukan menggunakan QGIS untuk menghasilkan peta risiko TBC. Hasil model menunjukkan akurasi sebesar 86,2% dengan variabel paling berpengaruh adalah kepadatan penduduk, kualitas hunian, dan akses fasilitas kesehatan. Peta risiko yang dihasilkan mengidentifikasi wilayah seperti Kota Medan, Deli Serdang, dan Labuhanbatu sebagai zona merah. Hasil penelitian ini diharapkan menjadi dasar perencanaan intervensi kesehatan yang lebih tepat sasaran di Sumatera Utara.

Keywords


Tuberkulosis; Machine Learning; Random Forest; Spasial; Sumatera Utara

Full Text:

PDF

References


“View of Anti-TB Drug Side-Effects on the Treatment of Drug-Resistant Tuberculosis (DR-TB) in dr. Zainoel Abidin Hospital Banda Aceh.” Accessed: Jun. 15, 2025. [Online]. Available: https://jurnalrespirologi.org/index.php/jri/article/view/507/666

A. N. Ayu Merzistya, M. Sakundarno Adi, D. Sutiningsih, and S. R. Rahayu, “THE QUALITY OF TUBERCULOSIS SERVICES IN PATIENTS’ PERSPECTIVES: A LITERATURE REVIEW,” Indonesian Journal of Health Administration (Jurnal Administrasi Kesehatan Indonesia), vol. 9, no. 1, pp. 67–81, Jun. 2021, doi: 10.20473/JAKI.V9I1.2021.67-81.

“Global Tuberculosis Report 2023.” Accessed: Jun. 15, 2025. [Online]. Available: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2023

D. A. A. Zahra and B. Y. M. Sinaga, “Factors Affecting the Quality of Life Among Pulmonary Tuberculosis Patients at the TB-DOTS Outpatient Clinic of Public Hospital,” Public Health of Indonesia, vol. 10, no. 1, pp. 43–51, Mar. 2024, doi: 10.36685/PHI.V10I1.774.

B. Y. M. Sinaga, D. A. Az Zahra, M. M. Simatupang, and A. S. Wahyuni, “Factors Associated with Quality of Life among Pulmonary Tuberculosis Patients,” Univers J Public Health, vol. 12, no. 2, pp. 315–325, Apr. 2024, doi: 10.13189/UJPH.2024.120216.

I. Castiglioni et al., “AI applications to medical images: From machine learning to deep learning,” Physica Medica: European Journal of Medical Physics, vol. 83, pp. 9–24, Mar. 2021, doi: 10.1016/J.EJMP.2021.02.006.

F. Dodo Telaumbanua, P. Hulu, T. Zulfiter Nadeak, R. Romeo Lumbantong, and A. Dharma, “Penggunaan Machine Learning Di Bidang Kesehhatan,” JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), vol. 2, no. 2, pp. 391–399, Oct. 2019.

A. Satria, O. S. Sitompul, and H. Mawengkang, “5-Fold Cross Validation on Supporting K-Nearest Neighbour Accuration of Making Consimilar Symptoms Disease Classification,” Proceedings - 2nd International Conference on Computer Science and Engineering: The Effects of the Digital World After Pandemic (EDWAP), IC2SE 2021, 2021, doi: 10.1109/IC2SE52832.2021.9792094.

M. Schonlau and R. Y. Zou, “The random forest algorithm for statistical learning,” Stata Journal, vol. 20, no. 1, pp. 3–29, Mar. 2020, doi: 10.1177/1536867X20909688/ASSET/EC601327-319C-4C16-97CA-BC08F874F55A/ASSETS/IMAGES/10.1177_1536867X20909688-IMG9.PNG.

M. Khairunisa, D. Made, S. A. Putri, G. Ngurah, and L. Wijayakusuma, “Perbandingan Metode Machine Learning untuk Analisis dan Prediksi Siklus Menstruasi,” JIEET (Journal of Information Engineering and Educational Technology), vol. 8, no. 2, pp. 111–115, May 2024, doi: 10.26740/JIEET.V8N2.P111-115.

D. I. P. Desy, A. F. R. Kholdani, T. W. Qur’ana, and A. Dharmawati, “Pemodelan Spasial untuk Analisa Produksi Padi Integrasi Machine Learning,” Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 14, no. 2, pp. 128–137, Nov. 2023, doi: 10.31849/DIGITALZONE.V14I2.16256.

B. F. Khashoggi and A. Murad, “Issues of Healthcare Planning and GIS: A Review,” ISPRS International Journal of Geo-Information 2020, Vol. 9, Page 352, vol. 9, no. 6, p. 352, May 2020, doi: 10.3390/IJGI9060352.

F. Ramadhani, P. M. Fadillah, D. Septiana, A. Satria, and S. N. Amalia, “A Spatial Approach to Analyze the Distribution and Risk Factors of Stunting in North Sumatra with the K-Means Algorithm,” Proceedings of the International Conference on Electrical Engineering and Informatics, pp. 1–6, 2024, doi: 10.1109/ICELTICS62730.2024.10776521.

I. P. Sari, Al-Khowarizmi, F. Ramadhani, A. Satria, and O. K. Sulaiman, “Leukocoria Identification: A 5-Fold Cross Validation CNN and Adaboost Hybrid Approach,” 6th International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2023 - Proceeding, pp. 486–491, 2023, doi: 10.1109/ISRITI60336.2023.10467242.

F. Ramadhani, M. Zarlis, and S. Suwilo, “Improve BIRCH algorithm for big data clustering,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jan. 2020. doi: 10.1088/1757-899X/725/1/012090.

A. Septiami et al., “ANALISIS PENYEBARAN GIZI BURUK PADA BALITA DI NUSA TENGGARA BARAT (NTB) MENGGUNAKAN INDEKS MORAN (MORAN’S I) DAN LOCAL INDICATOR OF SPATIAL ASSOCIATION (LISA),” Jurnal Gaussian, vol. 13, no. 2, pp. 462–471, Dec. 2024, doi: 10.14710/J.GAUSS.13.2.462-471.

M. Syukri et al., “Identifikasi Pola Sebaran Spasial Dengan Metode Getis Ord Gi* Pada Kasus Tuberkulosis Di Kota Jambi 2018-2021,” Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, vol. 12, no. 4, pp. 621–628, Oct. 2022, doi: 10.32583/PSKM.V12I4.712.




DOI: https://doi.org/10.46576/djtechno.v6i2.6840

Article Metrics

Abstract view : 3 times
PDF – 2 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Fanny Ramadhani, Said Iskandar Al-Idrus, Dian Septiana, Arnita Arnita, Diah Retno Wahyuningrum

DJTECHNO: Jurnal Teknologi Informasi Indexed By


MEMBER OF


Dedicated to :

Djtechno: Jurnal Teknologi Informasi published by :

PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA

Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783  Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id

Djtechno: Jurnal Teknologi Informasi

Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License