OPTIMALISASI PREDIKSI SAHAM APPLE DAN SAMSUNG DENGAN ALGORITMA BPNN

Atika Mutiarachim, Yupie Kusumawati, Nurchayati Nurchayati, Aulia Indriawati

Abstract


Pasar saham global khususnya bidang teknologi mengalami volatilitas yang signifikan, dengan saham Apple Inc. dan Samsung Electronics Co., Ltd sebagai pemain utama. Prediksi signifikan sangat diperlukan untuk mengurangi resiko investasi. Penelitian ini menganalisis dan membandingkan kinerja Backpropagation Neural Network (BPNN) dalam memprediksi pergerakan saham Apple dan Samsung. Dataset publik diperoleh dari Kaggle, saham Samsung dengan 6128 data periode 4 Januari 2000 sampai 13 Juni 2024 dan saham Apple dengan 2476 data periode 2 Januari 2014 sampai 31 Oktober 2023. Metode BPNN diterapkan dengan optimasi parameter learning rate, momentum, dan training cycle, pembagian data 10-fold cross validation, evaluasi nilai Root Mean Square Error (RMSE). Hasil terbaik menunjukkan konfiguasi optimal diperoleh dari learning rate 0.1, momentum 0.9, error epsilon 1.0E-4 dan training cycle 60. Nilai RMSE terbaik saham Apple 0.802 0.263 dengan akurasi 99.85%, dan pada saham Samsung RMSE terbaik 399.806 102.670 dengan akurasi 99.36%. Penelitian membuktikan BPNN dengan pola 0.1-0.9-60 sangat efektif memprediksi harga Close sehingga mampu memberikan kontribusi signifikan bagi investor dalam melakukan evaluasi investasi sebagai strategi meminimalisir resiko saham.


Keywords


Backpropagation Neural Network; Stock Price Prediction; Apple; Samsung; Machine Learning

Full Text:

PDF

References


H. Albasoos and N. Al-Musallami, “The conflict between Apple and Samsung over Patents and Copyrights,” vol. 2, no. 3, pp. 1–7, 2020, doi: 10.36096/brss.v2i3.206.

Susbiyantoro, Caroline, J. Aninam, and A. R. Nugraha, “Analisis Perbandingan Merek Smartphone Apple dan Samsung pada Mahasiswa Fakultas Ekonomi Universitas Swasta di Jakarta,” Jurnal EMT KITA, vol. 7, no. 4, pp. 950–963, Oct. 2023, doi: 10.35870/emt.v7i4.1547.

A. Mutiarachim, CHAPTER XII Integration of Artificial Intelligence and Big Data Analytics in Customer-Centric Organizations.

M. Bansal, A. Goyal, and A. Choudhary, “Stock Market Prediction with High Accuracy using Machine Learning Techniques,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 247–265. doi: 10.1016/j.procs.2022.12.028.

M. Rifaai, A. Ananda, and R. Kurniawan, “Perbandingan Algoritma Regresi Linier Dengan Neural Network Untuk Memprediksi Harga Saham Bank Jago,” 2024.

M. Vijh, D. Chandola, V. A. Tikkiwal, and A. Kumar, “Stock Closing Price Prediction using Machine Learning Techniques,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 599–606. doi: 10.1016/j.procs.2020.03.326.

Khalis Sofi, Aswan Supriyadi Sunge, Sasmitoh Rahmad Riady, and Antika Zahrotul Kamalia, “Perbandingan Algoritma Linear Regression, LSTM dan GRU dalam Memprediksi Harga Saham dengan Model Time Series,” SEMINASTIKA, vol. 3, no. 1, pp. 39–46, Nov. 2021, doi: 10.47002/seminastika.v3i1.275.

R. N. Silalahi and Muljono, “Perbandingan Kinerja Metode Linear Regression, LSTM dan GRU Untuk Prediksi Harga Penutupan Saham Coca-Cola,” Komputika: Jurnal Sistem Komputer, vol. 13, no. 2, pp. 201–211, Oct. 2024.

O. Barus and C. Wijaya, “Implementasi Metode Neural Network Backpropagation dalam Prediksi Indeks Harga Saham Gabungan (IHSG),” SEMINASTIKA, vol. 3, no. 1, pp. 79–85, Nov. 2021, doi: 10.47002/seminastika.v3i1.252.

M. Muzani, M. Martanto, A. R. Dikananda, and A. Rifai, “Alghoritma Backpropagation Neural Network dengan Mengoptimasi Particle Swarm Optimization Untuk Memprediksi Saham Bank BCA,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 2, Apr. 2025, doi: 10.23960/jitet.v13i2.6208.

H. Adjie, N. Larasati, and F. Matematika dan Ilmu Pengetahuan Alam, “Analisis Prediksi Harga Saham Bank Central Asia Pasca Stock Split Menggunakan Backpropagation Neural Network dengan Algoritma Inisialisasi Nguyen-Widrow,” Aktuaria dan Data Sains, vol. 1, no. 2, pp. 26–34, 2024, [Online]. Available: http://jos.unsoed.ac.id/index.php/skewness/

H. Hartati, A. H. Saputra, and I. Saluza, “Optimisasi Backpropagation Neural Network dalam Memprediksi IHSG,” Jurnal Ilmiah Informatika Global, vol. 13, no. 1, Apr. 2022, doi: 10.36982/jiig.v13i1.2066.

V. Puspaning Ramadhan, F. Yulian Pamuji, and A. History, “Jurnal Teknologi dan Manajemen Informatika Analisis Perbandingan Algoritma Forecasting dalam Prediksi Harga Saham LQ45 PT Bank Mandiri Sekuritas (BMRI) Article Info ABSTRACT,” vol. 8, pp. 39–45, 2022, [Online]. Available: http://http://jurnal.unmer.ac.id/index.php/jtmi

M. Al Haris, L. I. Setyaningsih, F. Fauzi, and S. Amri, “Projection of PT Aneka Tambang Tbk Share Risk Value Based on Backpropagation Artificial Neural Network Forecasting Result,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 8, no. 2, p. 578, Apr. 2024, doi: 10.31764/jtam.v8i2.20267.

D. Febiyanti, Nonong Amalita, Dony Permana, and Tessy Octavia Mukhti, “Backpropagation Neural Network Application in Predicting The Stock Price of PT Bank Rakyat Indonesia Tbk,” UNP Journal of Statistics and Data Science, vol. 1, no. 5, pp. 441–448, Nov. 2023, doi: 10.24036/ujsds/vol1-iss5/113.

S. Kassaymeh, M. Al-Laham, M. A. Al-Betar, M. Alweshah, S. Abdullah, and S. N. Makhadmeh, “Backpropagation Neural Network optimization and software defect estimation modelling using a hybrid Salp Swarm optimizer-based Simulated Annealing Algorithm,” Knowl Based Syst, vol. 244, p. 108511, May 2022, doi: 10.1016/J.KNOSYS.2022.108511.

D. Fu, L. Wang, G. Lv, Z. Shen, H. Zhu, and W. D. Zhu, “Advances in dynamic load identification based on data-driven techniques,” Eng Appl Artif Intell, vol. 126, Nov. 2023, doi: 10.1016/j.engappai.2023.106871.

M. Dampfhoffer, T. Mesquida, A. Valentian, and L. Anghel, “Backpropagation Based Learning Techniques for Deep Spiking Neural Networks A Survey,” IEEE Trans Neural Netw Learn Syst, vol. 35, no. 9, pp. 11906–11921, Sep. 2024, Accessed: Jun. 03, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10097504

S. Y. Heng et al., “Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-13532-3.

M. A. Z. Raja, S. E. Awan, M. Shoaib, and M. Awais, “Backpropagated Intelligent Networks for the Entropy Generation and Joule Heating in Hydromagnetic Nanomaterial Rheology Over Surface with Variable Thickness,” Arab J Sci Eng, vol. 47, no. 6, pp. 7753–7777, 2022, doi: 10.1007/s13369-022-06667-y.

Y. Zhang and L. Shen, “Automatic Learning Rate Adaption for Memristive Deep Learning Systems,” IEEE Trans Neural Netw Learn Syst, vol. 35, no. 8, pp. 10791–10802, Aug. 2024, Accessed: Jun. 03, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/10049413

“Chapter 4 Statistical techniques for data analysis,” Developments in Water Science, vol. 51, no. C, pp. 207–276, 2003, doi: 10.1016/S0167-5648(03)80058-8.




DOI: https://doi.org/10.46576/djtechno.v6i2.6707

Article Metrics

Abstract view : 2 times
PDF – 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Atika Mutiarachim, Yupie Kusumawati, Nurchayati Nurchayati, Aulia Indriawati

DJTECHNO: Jurnal Teknologi Informasi Indexed By


MEMBER OF


Dedicated to :

Djtechno: Jurnal Teknologi Informasi published by :

PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA

Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783  Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id

Djtechno: Jurnal Teknologi Informasi

Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License