POLA-POLA PENGGUNAAN KECERDASAN ARTIFISIAL DALAM PENELITIAN KEAMANAN PANGAN

Bambang Suharjo

Abstract


Penelitian ini mengkaji penggunaan kecerdasan buatan (AI) dalam meningkatkan ketahanan pangan melalui tinjauan sistematis dan analisis bibliometrik. Dengan meningkatnya tantangan global seperti perubahan iklim dan pertumbuhan populasi, AI menawarkan solusi inovatif dalam sektor pangan. Studi ini menggunakan data dari Scopus dan analisis dilakukan dengan perangkat lunak VOSviewer untuk mengidentifikasi tren dan klaster tematik dalam literatur yang berkaitan dengan AI dan ketahanan pangan. Hasil menunjukkan peningkatan signifikan dalam publikasi terkait AI dalam lima tahun terakhir, dengan dominasi topik seperti prediksi hasil panen, deteksi penyakit tanaman, dan pengelolaan sumber daya pertanian. Klasterisasi tematik mengungkapkan adanya fokus pada pengembangan aplikasi prediktif dan diagnostik yang memanfaatkan teknologi penginderaan jauh dan pembelajaran mendalam. Penelitian ini menyarankan integrasi lebih lanjut antara teknologi AI dan sistem pertanian presisi untuk mendukung keputusan berbasis data dalam ketahanan pangan dan pertanian berkelanjutan.


Keywords


Artificial Intelligence; Food Security; Bibliometric Analysis

Full Text:

PDF

References


I. U. W. and W. FAO, The State of Food Security and Nutrition in the World 2023. FAO; IFAD; UNICEF; WFP; WHO;, 2023. doi: 10.4060/cc3017en.

A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Apr. 01, 2018, Elsevier B.V. doi: 10.1016/j.compag.2018.02.016.

J. You, X. Li, M. Low, D. Lobell, and S. Ermon, “Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 2017. [Online]. Available: www.aaai.org

S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Front Plant Sci, vol. 7, no. September, Sep. 2016, doi: 10.3389/fpls.2016.01419.

I. Pacal et al., “A systematic review of deep learning techniques for plant diseases,” Artif Intell Rev, vol. 57, no. 11, Nov. 2024, doi: 10.1007/s10462-024-10944-7.

K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine learning in agriculture: A review,” Aug. 14, 2018, MDPI AG. doi: 10.3390/s18082674.

M. E. Brown, “Satellite remote sensing in agriculture and food security assessment,” 2015.

C. Nakalembe et al., “A review of satellite-based global agricultural monitoring systems available for Africa,” Jun. 01, 2021, Elsevier B.V. doi: 10.1016/j.gfs.2021.100543.

N. N. Misra, Y. Dixit, A. Al-Mallahi, M. S. Bhullar, R. Upadhyay, and A. Martynenko, “IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry,” IEEE Internet Things J, vol. 9, no. 9, pp. 6305–6324, 2022, doi: 10.1109/JIOT.2020.2998584.

A. Kaur et al., “Artificial Intelligence Driven Smart Farming for Accurate Detection of Potato Diseases: A Systematic Review,” IEEE Access, vol. 12, pp. 193902–193922, 2024, doi: 10.1109/ACCESS.2024.3510456.

A. Sharma, A. Jain, P. Gupta, and V. Chowdary, “Machine Learning Applications for Precision Agriculture: A Comprehensive Review,” IEEE Access, vol. 9, pp. 4843–4873, 2021, doi: 10.1109/ACCESS.2020.3048415.

Y. Akkem, S. K. Biswas, and A. Varanasi, “Smart farming using artificial intelligence: A review,” Eng Appl Artif Intell, vol. 120, p. 105899, 2023, doi: https://doi.org/10.1016/j.engappai.2023.105899.

I. P. Guma, A. S. Rwashana, and B. Oyo, “Food Security Policy Analysis Using System Dynamics: The Case of Uganda,” in Research Anthology on Strategies for Achieving Agricultural Sustainability, IGI Global, 2022, pp. 301–320. doi: 10.4018/978-1-6684-5352-0.ch017.

K. Christos, T. Naoum, V. Dimitrios, and I. Eleftherios, “A System Dynamics Approach towards Food Security in Agrifood Supply Networks: A Critical Taxonomy of Modern Challenges in a Sustainability Context,” 9th Mibes International Conference, 2014, pp. 122–173.

B. M. Napoleão, F. Petrillo, S. Hallé, and M. Kalinowski, “TOWARDS CONTINUOUS SYSTEMATIC LITERATURE REVIEW IN SOFTWARE ENGINEERING A PREPRINT,” 2022.

D. Stefanovic, S. Havzi, D. Nikolic, D. Dakic, and T. Lolic, “Analysis of the Tools to Support Systematic Literature Review in Software Engineering,” IOP Conf Ser Mater Sci Eng, vol. 1163, no. 1, p. 012013, Aug. 2021, doi: 10.1088/1757-899x/1163/1/012013.

I. Zupic and T. Čater, “Bibliometric Methods in Management and Organization,” Organ Res Methods, vol. 18, no. 3, pp. 429–472, Jul. 2015, doi: 10.1177/1094428114562629.

N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” J Bus Res, vol. 133, pp. 285–296, Sep. 2021, doi: 10.1016/j.jbusres.2021.04.070.

N. Jan van Eck and L. Waltman, VOSviewer Manual. Leiden: Universiteit Leiden, 2023.

T. ALASALI and Y. ORTAKCI, “Clustering Techniques in Data Mining: A Survey of Methods, Challenges, and Applications,” Computer Science, Mar. 2024, doi: 10.53070/bbd.1421527.

J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Reviews of Geophysics, vol. 48, no. 4, Dec. 2010, doi: 10.1029/2010RG000345.

D. A. Tofu, “Pastoralists’ and agro-pastoralists’ livelihood resilience to climate change-induced risks in the Borana zone, south Ethiopia: Using resilience index measurement approach,” Pastoralism, vol. 13, no. 1, 2023, doi: 10.1186/s13570-022-00263-3.

AO, Climate change and food security: risks and responses. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, 2015.

T. H. H. Aldhyani, “Leaf Pathology Detection in Potato and Pepper Bell Plant using Convolutional Neural Networks,” 2022. doi: 10.1109/ICCES54183.2022.9835735.

S. Ramesh et al., “Plant Disease Detection Using Machine Learning,” in 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), 2018, pp. 41–45. doi: 10.1109/ICDI3C.2018.00017.

B. S. Hamed, M. M. Hussein, and A. M. Mousa, “Plant Disease Detection Using Deep Learning,” International Journal of Intelligent Systems and Applications, vol. 15, no. 6, pp. 38–50, Dec. 2023, doi: 10.5815/ijisa.2023.06.04.

B. P. Gyires-Tóth, M. Osváth, D. Papp, and G. Szucs, “Deep learning for plant classification and content-based image retrieval,” Cybernetics and Information Technologies, vol. 19, no. 1, pp. 88–100, 2019, doi: 10.2478/CAIT-2019-0005.

H. Tamiminia, B. Salehi, M. Mahdianpari, L. Quackenbush, S. Adeli, and B. Brisco, “Google Earth Engine for geo-big data applications: A meta-analysis and systematic review,” Jun. 01, 2020, Elsevier B.V. doi: 10.1016/j.isprsjprs.2020.04.001.

A. Shelestov, M. Lavreniuk, N. Kussul, A. Novikov, and S. Skakun, “Exploring Google earth engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping,” Front Earth Sci (Lausanne), vol. 5, pp. 1–10, Feb. 2017, doi: 10.3389/feart.2017.00017.

K. Bronson and I. Knezevic, “Big Data in food and agriculture,” Jan. 05, 2016, SAGE Publications Ltd. doi: 10.1177/2053951716648174.

Vasudevan N and Karthick T, “Big Data Analytics for Yield Prediction in Precision Agriculture,” in IntechOpen, 2024. doi: DOI:http://dx.doi.org/10.5772/intechopen.114165.

C. Zhang, W. Zhao, and L. Dong, “Design of Food Safety Supervision System in the Background of Big Data,” in 2022 International Conference on Artificial Intelligence in Everything (AIE), 2022, pp. 413–418. doi: 10.1109/AIE57029.2022.00085.




DOI: https://doi.org/10.46576/djtechno.v6i2.6685

Article Metrics

Abstract view : 4 times
PDF – 1 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 bambang suharjo

DJTECHNO: Jurnal Teknologi Informasi Indexed By


MEMBER OF


Dedicated to :

Djtechno: Jurnal Teknologi Informasi published by :

PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA

Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783  Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id

Djtechno: Jurnal Teknologi Informasi

Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License