PENERAPAN CONVOLUTIONAL NEURAL NETWORK UNTUK IDENTIFIKASI PENYAKIT PADA TANAMAN PADI DARI CITRA DAUN MENGGUNAKAN MODEL RESNET-101
Abstract
Full Text:
PDFReferences
Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186
Borhani, Y., Khoramdel, J., & Najafi, E. (2022). A deep learning based approach for automated plant disease classification using vision transformer. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15163-0
Cipta Sigitta Hariyono, R., Mega Saraswati, N., Noor Prasetyono, R., Zidan Alfariki, M., Peradaban Program Studi Informatika Fakultas Sains dan Teknologi Jln Raya Pagojengan Km, U., & Brebes, P. (2023). Rito Cipta Sigitta H, Deteksi Penyakit Bercak Coklat, Coklat Sempit Dan Hawar Melalui Spektrum Warna Citra Digital… DETEKSI PENYAKIT BERCAK COKLAT, COKLAT SEMPIT DAN HAWAR MELALUI SPEKTRUM WARNA CITRA DIGITAL DAUN PADI MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK. In ZONAsi: Jurnal Sistem Informasi (Vol. 5, Issue 2).
Erkamim, M., Prihatin, T., Saraswati, S. D., & Tonggiroh, M. (2024). Optimalisasi Throughput Pada Penerapan Load Balancing Dalam Jaringan Cloud Menggunakan Round Robin dan Least Connection. In Journal of System and Computer Engineering (JSCE) ISSN (Vol. 5, Issue 1).
Galih Wasis Wicaksono, & Andreawan. (2023). ResNet101 Model Performance Enhancement in Classifying Rice Diseases with Leaf Images. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 345–352. https://doi.org/10.29207/resti.v7i2.4575
Hairani, H., & Widiyaningtyas, T. (2024). Augmented Rice Plant Disease Detection with Convolutional Neural Networks. INTENSIF: Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi, 8(1), 27–39. https://doi.org/10.29407/intensif.v8i1.21168
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90
Khalid, M. M., & Karan, O. (2023). Deep Learning for Plant Disease Detection. International Journal of Mathematics, Statistics, and Computer Science, 2, 75–84. https://doi.org/10.59543/ijmscs.v2i.8343
Kuswidiyanto, L. W., Noh, H.-H., & Han, X. (2022). Plant Disease Diagnosis Using Deep Learning Based on Aerial Hyperspectral Images: A Review. Remote Sensing, 14(23), 6031. https://doi.org/10.3390/rs14236031
Niswati, Z., Hardatin, R., Muslimah, M. N., & Hasanah, S. N. (2021). Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear. Faktor Exacta, 14(3), 160. https://doi.org/10.30998/faktorexacta.v14i3.10010
Ridhovan, A., & Suharso, A. (2022). PENERAPAN METODE RESIDUAL NETWORK (RESNET) DALAM KLASIFIKASI PENYAKIT PADA DAUN GANDUM. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(1), 58–65. https://doi.org/10.29100/jipi.v7i1.2410
Salimah, N. A., Tutik Kuswinanti, & Andi Nasruddin. (2021). Eksplorasi dan Penentuan Ras Penyebab Penyakit Blas Padi di Kabupaten Maros. Jurnal Fitopatologi Indonesia, 17(2), 41–48. https://doi.org/10.14692/jfi.17.2.41-48
Sarwinda, D., Paradisa, R. H., Bustamam, A., & Anggia, P. (2021). Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer. Procedia Computer Science, 179, 423–431. https://doi.org/10.1016/j.procs.2021.01.025.
Sharma, A., Aswal, U. S., Rana, A., Vani, V. D., Sankhyan, A., & Shekhar. (2023). Real Time Plant Disease Detection Model using Deep Learning. 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), 2695–2699. https://doi.org/10.1109/IC3I59117.2023.10398070.
Torrey, L., & Shavlik, J. (2010). Transfer Learning. In Handbook of Research on Machine Learning Applications and Trends (pp. 242–264). IGI Global. https://doi.org/10.4018/978-1-60566-766-9.ch011
DOI: https://doi.org/10.46576/djtechno.v5i3.5098
Article Metrics
Abstract view : 127 timesPDF – 52 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Sidiq Pramono
DJTECHNO: Jurnal Teknologi Informasi Indexed By
Djtechno: Jurnal Teknologi Informasi published by :
PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA
Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783Â Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id
Djtechno: Jurnal Teknologi Informasi
Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License