INTEGRASI MODEL DEEP LEARNING EFFICIENTNET-B0 UNTUK DETEKSI PENYAKIT DAUN TOMAT PADA APLIKASI SELULER BERBASIS FLUTTER

Indah Clara Sari

Abstract


This research aims to develop the EfficientNet-B0 Deep Learning model for detecting diseases in tomato leaves and integrate it into a mobile application based on Flutter. The research method includes training the model using an image dataset with optimization techniques such as quantization and pruning for efficiency on resource-limited devices. The results show a loss value of 0.0939 and an accuracy of 0.9955 on test data, with detection times ranging from 0.150 to 0.554 seconds. The implementation in the application allows farmers to detect tomato leaf diseases in real-time with high accuracy, supporting sustainable agricultural practices. The application is designed to be user-friendly, enabling users to capture images of suspected diseased tomato leaves and obtain quick diagnostic results. Through optimization techniques, this model operates efficiently on resource-constrained devices without sacrificing accuracy. This research provides a significant contribution to the application of artificial intelligence technology in the agricultural sector, offering practical and innovative solutions for detecting plant diseases via mobile devices, and potentially enhancing efficiency and effectiveness in managing tomato plant diseases.

Keywords: Deep Learning, EfficientNet-B0, Tomato Leaf Disease Detection, Flutter, TensorFlow Lite.

Full Text:

PDF

References


Aulia Sabril. (2023). Rancang bangun perangkat lunak antarmuka kendali mikrokontroler ESP826 dengan jaringan internet menggunakan flutter 3.0. Micronic: Journal of Multidisciplinary Electrical and Electronics Engineering, 8698, 27–34. https://doi.org/10.61220/micronic.v1i2.2021

Bhupendra, Moses, K., Miglani, A., & Kumar Kankar, P. (2022). Deep CNN-based damage classification of milled rice grains using a high-magnification image dataset. Computers and Electronics in Agriculture, 195, 106811. https://doi.org/https://doi.org/10.1016/j.compag.2022.106811

Buhrmester, V., Münch, D., & Arens, M. (2021). Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey. Machine Learning and Knowledge Extraction, 3(4), 966–989. https://doi.org/10.3390/make3040048

Chen, X., Pu, X., Chen, Z., Li, L., Zhao, K.-N., Liu, H., & Zhu, H. (2023). Application of EfficientNet-B0 and GRU-based deep learning on classifying the colposcopy diagnosis of precancerous cervical lesions. Cancer Medicine, 12(7), 8690–8699. https://doi.org/https://doi.org/10.1002/cam4.5581

Chollet, F., & others. (2016). Building powerful image classification models using very little data. Keras Blog, 5, 90–95.

Aulia Sabril. (2023). Rancang bangun perangkat lunak antarmuka kendali mikrokontroler ESP826 dengan jaringan internet menggunakan flutter 3.0. Micronic: Journal of Multidisciplinary Electrical and Electronics Engineering, 8698, 27–34. https://doi.org/10.61220/micronic.v1i2.2021

Bhupendra, Moses, K., Miglani, A., & Kumar Kankar, P. (2022). Deep CNN-based damage classification of milled rice grains using a high-magnification image dataset. Computers and Electronics in Agriculture, 195, 106811. https://doi.org/https://doi.org/10.1016/j.compag.2022.106811

Buhrmester, V., Münch, D., & Arens, M. (2021). Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey. Machine Learning and Knowledge Extraction, 3(4), 966–989. https://doi.org/10.3390/make3040048

Chen, X., Pu, X., Chen, Z., Li, L., Zhao, K.-N., Liu, H., & Zhu, H. (2023). Application of EfficientNet-B0 and GRU-based deep learning on classifying the colposcopy diagnosis of precancerous cervical lesions. Cancer Medicine, 12(7), 8690–8699. https://doi.org/https://doi.org/10.1002/cam4.5581

Chollet, F., & others. (2016). Building powerful image classification models using very little data. Keras Blog, 5, 90–95.

Fajri, R., Fitria, F., & others. (2023). Pengembangan Real-Time Object Detection System pada Perangkat Single-Board Computer. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(2), 1154–1162.

Fawwaz, M. A. A., Ramadhani, K. N., & Sthevani, F. (2020). Klasifikasi Ras pada hewan peliharaan menggunakan Algoritma Convolutional Neural Network (CNN). 8(1), 715–730.

Liang, T., Glossner, J., Wang, L., Shi, S., & Zhang, X. (2021). Pruning and quantization for deep neural network acceleration: A survey. Neurocomputing, 461, 370–403.

Mahasin, M., & Dewi, I. A. (2022). Comparison of CSPDarkNet53, CSPResNeXt-50, and EfficientNet-B0 Backbones on YOLO V4 as Object Detector. International Journal of Engineering, Science and Information Technology, 2(3), 64–72.

Punuri, S. B., Kuanar, S. K., Kolhar, M., Mishra, T. K., Alameen, A., Mohapatra, H., & Mishra, S. R. (2023). Efficient Net-XGBoost: An Implementation for Facial Emotion Recognition Using Transfer Learning. Mathematics, 11(3). https://doi.org/10.3390/math11030776

Ridhovan, A., & Suharso, A. (2022). Penerapan Metode Residual Network (Resnet) Dalam Klasifikasi Penyakit Pada Daun Gandum. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(1), 58–65. https://doi.org/10.29100/jipi.v7i1.2410

Rozaqi, A. J., Sunyoto, A., & Arief, M. rudyanto. (2021). Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network. Creative Information Technology Journal, 8(1), 22. https://doi.org/10.24076/citec.2021v8i1.263

Tan, M., & Le, Q. (2019). {E}fficient{N}et: Rethinking Model Scaling for Convolutional Neural Networks. In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on Machine Learning (Vol. 97, pp. 6105–6114). PMLR. https://proceedings.mlr.press/v97/tan19a.html

Tangkelayuk, A. (2022). The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 1109–1119. https://doi.org/10.35957/jatisi.v9i2.2048

Veneman, R. (2021). Real-time skin cancer detection using neural networks on an embedded device.

Windiawan, R., Suharso, A., & Artikel, S. (2019). Identifikasi Penyakit pada Daun Kopi Menggunakan Metode Deep Learning VGG16 INFO ARTIKEL ABSTRAK. Exploreit, 13(2), 9–16. https://doi.org/10.35891/explorit

Yandika, R. F., Irawati, A. R., Komputer, J. I., Lampung, U., & Lampung, B. (2023). Pengembangan Aplikasi Kelas Ibu Hamil Berbasis Android Menggunakan Framework. Kumpulan JurnaL Ilmu Komputer (KLIK), 10, 320–331.

Yang, X., Zhang, S., Liu, J., Gao, Q., Dong, S., & Zhou, C. (2021). Deep learning for smart fish farming: applications, opportunities and challenges. Reviews in Aquaculture, 13(1), 66–90. https://doi.org/https://doi.org/10.1111/raq.12464

Zuhan, M., & Kristian, Y. (2023). Detection of Porang Plant Diseases and Pests (Amorphophallus Muelleri) Based on Leaf Imagery Utilizing DCNN Transfer Learning. JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem Dan Komputer, 3(2), 129. https://doi.org/10.32503/jtecs.v3i2.3709




DOI: https://doi.org/10.46576/djtechno.v5i2.4651

Article Metrics

Abstract view : 306 times
PDF – 160 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Indah Clara Sari

DJTECHNO: Jurnal Teknologi Informasi Indexed By


MEMBER OF


Dedicated to :

Djtechno: Jurnal Teknologi Informasi published by :

PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA

Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783  Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id

Djtechno: Jurnal Teknologi Informasi

Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License