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ABSTRAK 

 
Radiograf toraks (CXR) merupakan alat penting dalam diagnosis penyakit paru, namun interpretasinya 
memerlukan keahlian khusus dan berpotensi menimbulkan bias. Penelitian ini bertujuan mengeksplorasi 
kinerja lima arsitektur Convolutional Neural Network (CNN) berbasis transfer learning, yaitu VGG16, 
ResNet50, EfficientNetB0, DenseNet121, dan MobileNetV2, dalam mengklasifikasikan lima kelas penyakit 
paru-paru: bacterial pneumonia, COVID-19, tuberculosis, viral pneumonia, dan normal. Dataset yang 
digunakan dilengkapi dengan preprocessing CLAHE-RGB, augmentasi data, serta penanganan 
ketidakseimbangan kelas menggunakan class weighting. Evaluasi dilakukan dengan empat skenario epoch 
(5, 10, 15, dan 30), serta menggunakan metrik akurasi, precision, recall, F1-score, dan confusion matrix. Hasil 
menunjukkan bahwa model VGG16 pada epoch ke-15 memberikan performa terbaik dengan akurasi 93,95% 
dan F1-score 0,94. Penelitian ini menunjukkan bahwa kombinasi preprocessing yang tepat dan arsitektur 
CNN yang sesuai mampu meningkatkan akurasi klasifikasi penyakit paru secara signifikan. 
 
Kata Kunci— Convolutional Neural Network, Citra CXR, VGG16, CLAHE, Penyakit Paru. 
 

ABSTRACT 
 

Chest radiography (CXR) is a vital tool in diagnosing pulmonary diseases, yet its interpretation often requires 
expert analysis and may involve subjectivity. This study explores the performance of five Convolutional Neural 
Network (CNN) architectures: VGG16, ResNet50, EfficientNetB0, DenseNet121, and MobileNetV2 for classifying 
five categories of lung conditions: bacterial pneumonia, COVID-19, tuberculosis, viral pneumonia, and normal. 
The dataset underwent preprocessing using CLAHE-RGB enhancement, data augmentation, and class balancing 
with class weighting. Each model was trained using four epoch scenarios (5, 10, 15, and 30) and evaluated based 
on accuracy, precision, recall, F1-score, and confusion matrix. The results indicate that VGG16 with 15 epochs 
achieved the best performance, reaching 93.95% accuracy and 0.94 F1-score. This study demonstrates that 
combining appropriate preprocessing techniques with suitable CNN architectures significantly enhances 
classification performance for pulmonary disease detection. 
 
Keywords— Convolutional Neural Network, CXR images, VGG16, Transfer Learning, CLAHE, Lung Disease. 
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I. PENDAHULUAN 

Ketepatan diagnosis penyakit paru melalui citra 

radiograf toraks menjadi tantangan utama dalam dunia 

medis, mengingat tingginya prevalensi dan variasi 

penyakit yang menyerang sistem pernapasan serta 

keterbatasan sumber daya radiolog di banyak fasilitas 

kesehatan. Dalam praktik klinis, diagnosis penyakit 

paru menuntut kecepatan dan ketepatan tinggi untuk 

menunjang pengambilan keputusan medis yang efektif 

dan efisien. Salah satu alat diagnostik yang paling 

umum digunakan adalah citra radiograf toraks atau 

chest X-ray (CXR), yang memiliki keunggulan dari 

segi ketersediaan, biaya rendah, dan kemudahan 

penggunaan di berbagai tingkat layanan kesehatan, 

termasuk di fasilitas primer. 

Namun demikian, proses interpretasi citra CXR 

secara manual masih sangat bergantung pada keahlian 

dan pengalaman radiolog. Hal ini seringkali 

menimbulkan variabilitas subjektif yang berpotensi 

menyebabkan inkonsistensi dalam hasil diagnosis, 

terutama ketika dihadapkan pada volume data yang 

besar atau kasus dengan gejala yang tidak khas. Dalam 

beberapa tahun terakhir, pendekatan berbasis artificial 

intelligence (AI), khususnya deep learning dengan 

algoritma Convolutional Neural Network (CNN), 

mulai banyak diterapkan untuk mengotomatiskan 

proses identifikasi dan klasifikasi penyakit paru 

melalui citra radiografi. CNN dikenal memiliki 

kemampuan tinggi dalam mengekstraksi fitur spasial 

kompleks dari citra medis dan telah terbukti efektif 

dalam meningkatkan performa diagnostik. 

Studi yang dilakukan oleh Al-Sheikh et al. (2023) 

menunjukkan bahwa arsitektur CNN seperti VGG16 

mampu dikembangkan untuk klasifikasi multi-kelas 

penyakit paru dengan hasil yang menjanjikan [1]. 

Penelitian lain oleh Alshmrani et al. (2023) 

memperkuat temuan tersebut melalui penerapan 

VGG19 yang dikombinasikan dengan tiga blok CNN 

untuk mengklasifikasikan berbagai penyakit paru, 

termasuk COVID-19, pneumonia, tuberkulosis, kanker 

paru, dan lung opacity. Dengan menggunakan lebih 

dari 80.000 citra CXR yang telah melalui proses 

normalisasi, augmentasi, dan pengubahan ukuran 

(resizing), model mereka berhasil mencapai akurasi 

sebesar 96,48%, recall 93,75%, precision 97,56%, dan 

F1-score sebesar 95,62% [2]. Hasil ini mencerminkan 

efektivitas pendekatan berbasis CNN dalam 

menangani kompleksitas klasifikasi multi-kelas pada 

citra toraks. 

Selain pemilihan arsitektur CNN yang sesuai, 

tahapan preprocessing citra juga berperan penting 

dalam meningkatkan kualitas input dan akurasi model. 

Salah satu teknik yang banyak digunakan adalah 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE), yang bertujuan untuk meningkatkan 

kontras lokal serta menonjolkan detail penting dalam 

jaringan paru. El Lel (2023) membuktikan bahwa 

integrasi CLAHE dengan center cropping dan 

arsitektur CNN modern seperti DenseNet dan 

EfficientNet mampu meningkatkan performa 

klasifikasi pada dataset BIMCV dan PadChest secara 

signifikan [3]. Sejalan dengan itu, Çiğ et al. (2023) 

mengembangkan pendekatan hibrida dengan 

menggabungkan CLAHE dan algoritma Multi-

Objective Cuckoo Search (MOCS), dan mencatat 

akurasi mencapai 99,16% pada dataset COVID-19 

Radiography [4]. Temuan ini menegaskan bahwa 

optimalisasi preprocessing berbasis peningkatan 

kontras memiliki dampak besar terhadap efektivitas 

sistem klasifikasi berbasis CNN. 

Namun, meskipun banyak model CNN 

menunjukkan performa tinggi, tidak ada satu arsitektur 

yang secara universal unggul dalam semua jenis 

dataset atau kondisi penyakit. Bhatt et al. (2023) 

melakukan studi komparatif antara VGG16, ResNet50, 

dan DenseNet untuk deteksi pneumonia, dan 

menyimpulkan bahwa perbedaan arsitektur dan 

strategi pelatihan memberikan dampak signifikan 

terhadap hasil klasifikasi [5]. Penelitian lain oleh Jain 

et al. (2023) membandingkan model CNN, ResNet, 

dan Vision Transformers (ViT) untuk klasifikasi multi-

label, dan menemukan bahwa meskipun ViT memiliki 

potensi dalam mengolah informasi global, ResNet 

tetap unggul dalam hal akurasi pada dataset besar 

seperti NIH ChestX-ray [6]. Sementara itu, Usman et 

al. (2023) menyoroti performa DenseNet-121 dalam 

mendeteksi hingga 14 jenis penyakit toraks dan 

menyatakan bahwa model tersebut mampu menyamai 

bahkan melampaui CheXNeXt dalam skenario tertentu 

[7]. Temuan-temuan tersebut menunjukkan pentingnya 

eksplorasi terhadap berbagai arsitektur CNN dalam 

konteks klasifikasi multi-kelas citra radiografi. 

Berdasarkan latar belakang di atas, jelas bahwa 

keberhasilan sistem klasifikasi otomatis penyakit paru 

sangat dipengaruhi oleh pemilihan arsitektur model 

yang tepat, strategi preprocessing yang efektif, dan 

metode evaluasi yang sesuai dengan karakteristik 

dataset. Oleh karena itu, penelitian ini bertujuan untuk 

melakukan studi komparatif terhadap lima arsitektur 

CNN yang populer dan banyak digunakan dalam 

literatur, yaitu VGG16, ResNet50, EfficientNetB0, 

MobileNetV2, dan DenseNet121. Setiap model akan 

dievaluasi berdasarkan akurasi, presisi, recall, dan F1-

score pada dataset citra CXR yang telah melalui 

tahapan preprocessing menggunakan CLAHE, 

augmentasi data, serta penyeimbangan kelas (class 
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weighting). Melalui pendekatan ini, diharapkan 

penelitian ini dapat memberikan kontribusi signifikan 

terhadap pemahaman kinerja relatif antar model, serta 

menjadi dasar dalam pengembangan sistem deteksi 

penyakit paru otomatis yang lebih akurat, adaptif, dan 

aplikatif di lingkungan klinis nyata. 

 

II. TINJAUAN PUSTAKA 

CNN dalam Klasifikasi Penyakit Paru-Paru 

Convolutional Neural Network (CNN) telah 

menjadi pendekatan dominan dalam pengembangan 

sistem klasifikasi penyakit paru-paru berbasis citra 

radiografi, khususnya pada modalitas chest X-ray 

(CXR). Kemampuannya dalam mengekstraksi fitur 

spasial dari data visual secara hierarkis dan otomatis 

menjadikan CNN sangat efektif dalam 

mengidentifikasi pola patologis pada struktur paru 

yang sering kali sulit dikenali secara manual. 

Salah satu penelitian awal yang 

mendemonstrasikan potensi CNN dalam klasifikasi 

multi-kelas penyakit paru dilakukan oleh Ashwini et al. 

(2021), yang merancang model CNN untuk 

membedakan tiga kategori utama yaitu pneumonia, 

fibrosis, dan kondisi normal. Melalui tahapan 

preprocessing dan augmentasi data, serta penerapan 

teknik dropout dan optimasi berbasis algoritma Adam, 

model tersebut berhasil mencapai akurasi sebesar 

96,8%, menunjukkan efektivitas pendekatan CNN 

pada dataset terbatas [8]. 

Selanjutnya, Jain et al. (2022) mengembangkan 

sistem Computer-Aided Diagnosis (CAD) berbasis 

CNN untuk deteksi pneumonia. Mereka 

memanfaatkan transfer learning dengan model 

pralatih dan menerapkan fine-tuning guna 

menyesuaikan bobot jaringan terhadap karakteristik 

citra CXR. Studi ini juga mengintegrasikan teknik 

visualisasi heatmap untuk menyoroti area opasitas 

pada paru-paru, yang memperkuat interpretasi hasil 

prediksi oleh model [9]. 

Untuk mengatasi keterbatasan dalam klasifikasi 

multi-kelas berskala besar, Kabiraj et al. (2022) 

mengusulkan arsitektur CX-Ultranet, yakni model 

CNN yang dimodifikasi berdasarkan EfficientNet 

dengan pendekatan compound scaling. Model ini 

berhasil mengklasifikasikan 13 kategori penyakit 

toraks dengan akurasi rata-rata 88%, serta mampu 

menangani ketidakseimbangan kelas menggunakan 

fungsi loss berbobot dan augmentasi data. Dataset 

besar dari NIH dan Mendeley digunakan untuk 

memastikan stabilitas dan generalisasi model dalam 

berbagai skenario klasifikasi penyakit paru [10]. 

Selain akurasi, aspek interpretabilitas menjadi 

perhatian penting dalam pengembangan sistem 

diagnosis otomatis berbasis CNN. Menyadari hal 

tersebut, Mridha et al. (2023) membangun model 

klasifikasi pneumonia yang tidak hanya mencapai 

akurasi tinggi sebesar 99%, tetapi juga dilengkapi 

dengan pendekatan Explainable AI (XAI) seperti 

Grad-CAM dan Grad-CAM++. Pendekatan ini 

memungkinkan visualisasi bagian citra yang 

berkontribusi terhadap prediksi model, sehingga 

meningkatkan transparansi dan kepercayaan pengguna 

klinis terhadap sistem [11]. 

 

Arsitektur CNN dalam Klasifikasi Citra Radiograf 

Toraks 

Pemilihan arsitektur Convolutional Neural 

Network (CNN) berperan krusial dalam menentukan 

efektivitas sistem klasifikasi citra medis, termasuk 

radiograf toraks (chest X-ray). Setiap arsitektur 

memiliki karakteristik dan keunggulan tersendiri 

dalam hal kedalaman jaringan, jumlah parameter, 

efisiensi komputasi, serta kemampuan generalisasi 

terhadap berbagai jenis data. 

Salah satu arsitektur yang banyak digunakan 

adalah ResNet-50, yaitu model deep CNN yang terdiri 

atas 50 lapisan dengan fitur khas berupa residual 

connections. Pendekatan ini pertama kali 

diperkenalkan untuk mengatasi masalah degradasi 

akurasi pada jaringan yang sangat dalam, di mana 

penambahan lapisan justru menyebabkan penurunan 

performa model. Residual connection memungkinkan 

aliran informasi secara langsung melalui shortcut 

connection tanpa harus melewati transformasi non-

linear, sehingga mempercepat proses pelatihan dan 

menjaga kestabilan jaringan. Cahyani et al. (2023) dan 

Kansal et al. (2024) menunjukkan bahwa penggunaan 

ResNet-50 dalam klasifikasi citra CXR mampu 

memberikan akurasi tinggi dengan generalisasi yang 

baik [12][13]. 

Di sisi lain, EfficientNet-B0 hadir sebagai solusi 

untuk meningkatkan akurasi sambil tetap menjaga 

efisiensi komputasi. Arsitektur ini diperkenalkan 

dengan konsep compound scaling, yaitu pendekatan 

untuk menskalakan tiga dimensi utama model secara 

simultan: kedalaman jaringan, lebar layer, dan resolusi 

input citra. Pendekatan ini memungkinkan 

peningkatan performa tanpa eksplorasi arsitektur 

secara manual, serta menghasilkan jumlah parameter 

yang relatif lebih sedikit dibandingkan CNN 

konvensional. Kansal et al. (2024) melaporkan bahwa 

EfficientNet-B0 menunjukkan performa kompetitif 

dalam klasifikasi CXR dengan konsumsi sumber daya 

yang rendah, sehingga cocok digunakan pada 

perangkat dengan keterbatasan komputasi [13]. 

Pengembangan lebih lanjut dari arsitektur ini 

direpresentasikan oleh EfficientNetV2-L, yang 

diterapkan oleh Ali et al. (2024) dalam klasifikasi 

pneumonia berbasis citra CXR. Model ini 
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mengintegrasikan pendekatan progressive learning 

dan fused convolution untuk mempercepat pelatihan 

serta meningkatkan akurasi pada dataset besar. Hasil 

eksperimen menunjukkan bahwa EfficientNetV2-L 

memiliki keunggulan signifikan dibandingkan 

pendahulunya dalam mengklasifikasikan penyakit paru 

secara lebih akurat dan efisien [14]. 

Selain arsitektur generik, penelitian terkini juga 

mengarah pada pengembangan arsitektur khusus untuk 

penyakit tertentu. Salah satunya adalah COPDNet, 

yang diperkenalkan oleh Agughasi et al. (2023) untuk 

deteksi penyakit paru obstruktif kronik (COPD). 

Model ini merupakan modifikasi dari ResNet-50, 

dengan penambahan attention block dan peningkatan 

kapabilitas ekstraksi fitur, khususnya dalam 

menangkap pola spasial yang relevan dengan 

karakteristik COPD. Inovasi ini terbukti meningkatkan 

sensitivitas model dalam mengidentifikasi penyakit 

yang sering kali memiliki gejala tumpang tindih 

dengan patologi paru lainnya [15]. 

Pendekatan inovatif dalam pengembangan 

arsitektur CNN juga diperkenalkan oleh Pramanik et al. 

(2022) melalui model TOPCONet, yang 

menggabungkan CNN ringan dengan metode 

ensemble berbasis Technique for Order of Preference 

by Similarity to Ideal Solution (TOPSIS). Model ini 

terdiri dari tiga klasifikator dasar yang dilatih pada 

varian input berbeda—gambar RGB, kanal merah, dan 

citra gabungan dengan deteksi tepi Robert—untuk 

menangkap fitur komplementer secara maksimal. 

Hasil klasifikasi dari ketiga model digabung 

menggunakan strategi multi-criteria decision making, 

yang terbukti lebih efektif dibanding metode ensembel 

tradisional seperti majority voting dan soft voting. 

Dengan jumlah parameter yang jauh lebih kecil 

dibandingkan model konvensional seperti DenseNet 

atau VGG-19, TOPCONet menunjukkan performa 

sangat baik (akurasi hingga 98,78%) pada beberapa 

dataset CXR publik, sekaligus efisien secara 

komputasi dan cocok untuk implementasi di 

lingkungan dengan sumber daya terbatas [16]. 

 

 

Transfer Learning dalam Klasifikasi Citra 

Radiograf Toraks (CXR) 

Transfer learning telah menjadi pendekatan yang 

semakin banyak diadopsi dalam klasifikasi citra medis, 

termasuk radiograf toraks (chest X-ray), karena 

kemampuannya untuk memanfaatkan pengetahuan 

dari model pralatih yang dilatih pada dataset berskala 

besar seperti ImageNet. Strategi ini terbukti efektif 

dalam meningkatkan akurasi dan efisiensi pelatihan, 

terutama ketika model diterapkan pada domain medis 

yang cenderung memiliki keterbatasan jumlah data 

berlabel. 

Salah satu pendekatan inovatif dalam transfer 

learning ditunjukkan oleh Anwar et al. (2023), yang 

mengembangkan metode self-supervised learning 

untuk ekstraksi representasi awal dari citra CXR tanpa 

memerlukan label. Representasi ini kemudian 

digunakan sebagai fondasi dalam proses klasifikasi 

penyakit paru. Hasil eksperimen mereka menunjukkan 

bahwa pelatihan mandiri sebelum transfer learning 

mampu meningkatkan performa CNN secara 

signifikan, terutama dalam kondisi data berlabel yang 

terbatas [17]. 

Studi lain dilakukan oleh Mirzaee dan 

Ghorbanzadeh (2025), yang membandingkan performa 

tiga arsitektur CNN populer dalam konteks transfer 

learning, yakni ResNet50, MobileNetV2, dan VGG16. 

Penelitian ini mengungkap bahwa MobileNetV2 

menunjukkan efisiensi tertinggi, dengan akurasi 

validasi mencapai 89,21%, serta keunggulan dalam 

kecepatan inferensi. Hal ini menjadikan MobileNetV2 

ideal untuk implementasi real-time di perangkat 

dengan keterbatasan sumber daya. Sebaliknya, 

ResNet50 memiliki kelebihan dalam hal kedalaman 

ekstraksi fitur namun memerlukan tuning yang lebih 

kompleks untuk mencapai performa optimal. 

Sementara itu, VGG16 menunjukkan performa yang 

kompeten namun membutuhkan waktu pelatihan yang 

lebih lama karena arsitekturnya yang lebih sederhana 

namun parameter-intensif [18]. 

Penelitian lain oleh Hamal et al. (2022) 

memperkuat efektivitas transfer learning dengan 

membandingkan performa model machine learning 

tradisional seperti K-Nearest Neighbors (KNN) dan 

Support Vector Machine (SVM) dengan pendekatan 

CNN berbasis transfer learning menggunakan 

arsitektur InceptionV3 dan VGG16. Hasil eksperimen 

menunjukkan bahwa model CNN yang diinisialisasi 

dengan bobot pralatih secara signifikan melampaui 

model konvensional dalam mendeteksi pneumonia dari 

citra CXR. Akurasi tertinggi diperoleh oleh model 

berbasis InceptionV3 dengan nilai 90,2%, 

dibandingkan SVM yang hanya mencapai 76,1%. 

Penelitian ini menegaskan bahwa transfer learning 

tidak hanya meningkatkan akurasi klasifikasi, tetapi 

juga mengurangi kebutuhan waktu pelatihan serta 

memperluas generalisasi model pada data medis yang 

kompleks dan bervariasi [19]. 

Lebih lanjut, penelitian oleh Mirugwe et al. (2025) 

melakukan perbandingan menyeluruh terhadap enam 

arsitektur CNN, yaitu VGG16, VGG19, ResNet50, 

ResNet101, ResNet152, dan Inception-ResNet-V2, 

dalam tugas klasifikasi tuberkulosis berbasis citra 

CXR. Meskipun memiliki jumlah parameter yang 

lebih sedikit dibanding model lain, VGG16 justru 

menghasilkan akurasi tertinggi sebesar 99,4% dengan 

F1-score mencapai 98,3%. Temuan ini menunjukkan 
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bahwa arsitektur yang relatif ringan tetap mampu 

memberikan hasil sangat baik apabila strategi transfer 

learning dan fine-tuning diterapkan secara tepat. Selain 

itu, model kompleks seperti ResNet101 dan Inception-

ResNet-V2 juga menunjukkan performa yang 

kompetitif, khususnya saat pelatihan difokuskan pada 

lapisan akhir dengan melakukan pembekuan terhadap 

lapisan awal [20]. 

Subramaniam et al. (2023) menegaskan bahwa 

efektivitas pendekatan transfer learning dalam 

pengembangan sistem deteksi otomatis COVID-19 

berbasis citra CXR. Studi ini mencermati berbagai 

arsitektur CNN pralatih seperti VGG16, ResNet101, 

MobileNet, dan Inception-V3 yang telah diadaptasi 

untuk klasifikasi dua kelas (binary) maupun multi-

kelas, dengan fokus pada kasus COVID-19, 

pneumonia, dan kondisi normal. Salah satu temuan 

penting dari tinjauan ini adalah bahwa penggunaan 

model pralatih tidak hanya mempercepat proses 

pelatihan dan meningkatkan akurasi, tetapi juga 

memungkinkan model untuk belajar dari fitur 

representatif yang telah dikembangkan pada dataset 

berskala besar seperti ImageNet. Selain itu, penelitian 

ini menekankan pentingnya tahapan preprocessing 

seperti normalisasi, histogram equalization, dan 

augmentasi berbasis rotasi serta flipping untuk 

meningkatkan kestabilan model dan mengurangi risiko 

overfitting. [21]. 

 

Klasifikasi Multi-Kelas dalam Citra Radiograf 

Toraks (CXR) 

Klasifikasi multi-kelas pada citra radiograf toraks 

(chest X-ray / CXR) merupakan tantangan tersendiri 

dalam bidang pengolahan citra medis, mengingat 

banyaknya jenis penyakit paru yang memiliki 

kemiripan dalam pola visual dan derajat keparahan 

yang bervariasi. Keberhasilan dalam tugas ini sangat 

bergantung pada kemampuan model untuk 

mengekstraksi fitur yang diskriminatif, menangani 

ketidakseimbangan kelas, serta menjaga akurasi 

prediksi untuk setiap label yang berbeda. 

Nahiduzzaman et al. (2023) mengusulkan 

framework inovatif berbasis parallel CNN–Extreme 

Learning Machine (CNN–ELM) yang mampu 

mengklasifikasikan 17 jenis penyakit paru, termasuk 

COVID-19, tuberkulosis, dan pneumonia. Model ini 

menggabungkan CNN ringan sebagai ekstraktor fitur 

dan ELM sebagai pengklasifikasi utama. Pendekatan 

ini mampu mencapai akurasi sebesar 90,92% dan F1-

score rata-rata 0,91, bahkan ketika diuji pada dataset 

yang bersifat tidak seimbang. Pengujian dalam 

berbagai skenario multi-kelas menunjukkan bahwa 

performa model ini melampaui sejumlah arsitektur 

state-of-the-art lainnya dalam hal kecepatan dan 

akurasi klasifikasi [22]. 

Majumder et al. (2023) mengambil pendekatan 

berbeda dengan mengembangkan sistem klasifikasi 

multi-label dan multi-class menggunakan arsitektur 

DenseNet untuk mendeteksi hingga 15 jenis penyakit 

paru. Dengan memanfaatkan strategi data 

augmentation dan transfer learning, serta fine-tuning 

terhadap bobot model pretrained, mereka berhasil 

mencapai F1-score sebesar 0,89 dan Area Under 

Curve (AUC) sebesar 0,95 pada dua dataset besar, 

yakni CheXpert dan ChestX-ray14. Studi ini 

menyoroti efektivitas DenseNet dalam menangani 

kompleksitas visual yang tumpang tindih antar 

penyakit paru [23]. 

Pendekatan berbasis ensemble learning juga 

terbukti menjanjikan dalam meningkatkan akurasi 

klasifikasi multi-kelas. Ejaz et al. (2021) 

memperkenalkan model ensembel CNN yang dilatih 

untuk mengklasifikasikan empat kategori utama: 

normal, pneumonia bakteri, pneumonia virus, dan 

COVID-19. Mereka menggunakan model pretrained 

seperti ResNet50 dan InceptionV3 dalam pendekatan 

transfer learning, yang kemudian dikombinasikan 

dalam satu sistem klasifikasi. Hasil eksperimen 

menunjukkan akurasi tertinggi sebesar 96,78%, yang 

mencerminkan keunggulan pendekatan ensembel 

dalam mengatasi tumpang tindih antar kelas dan 

meningkatkan generalisasi model [24]. 

Analisis komparatif oleh Nallakaruppan et al. 

(2022) membandingkan performa berbagai arsitektur 

deep learning dalam klasifikasi citra CXR COVID-19, 

seperti ResNet, VGG16, InceptionV3, dan Xception, 

baik secara individual maupun dalam kombinasi. Studi 

ini menunjukkan bahwa InceptionV3 mencapai akurasi 

tertinggi sebesar 96,88% dan F1-score 0,9688, 

menjadikannya unggul dalam klasifikasi multi-kelas. 

Sementara itu, pendekatan gabungan seperti ResNet 

dengan VGG menunjukkan potensi tinggi untuk 

klasifikasi infeksi namun mengalami fluktuasi pada 

loss validasi. Temuan ini menekankan pentingnya 

pemilihan arsitektur dan stabilitas pelatihan dalam 

menangani kompleksitas klasifikasi multi-kelas citra 

CXR secara efektif [25]. 

 

III.METODOLOGI PENELITIAN 

Metodologi dalam penelitian ini mencakup tahapan 

sistematis yang dimulai dari pengumpulan data citra 

radiograf toraks (CXR) yang diunduh dari Kaggle, 

dilanjutkan dengan analisis distribusi data, 

preprocessing (resize, normalisasi, dan peningkatan 

kontras menggunakan CLAHE), serta augmentasi data 

untuk meningkatkan variasi dan generalisasi model. 

Data kemudian dibagi menjadi data latih dan uji yang 

digunakan untuk melatih lima arsitektur CNN 

pretrained, yaitu VGG16, EfficientNetB0, 
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DenseNet121, MobileNetV2, dan ResNet50. Masing-

masing model dikonfigurasi dengan layer klasifikasi 

yang sama dan diuji pada empat variasi epoch (5, 10, 

15, dan 30) menggunakan class weighting dan 

callback. Evaluasi dilakukan menggunakan metrik 

akurasi, precision, recall, dan f1-score, dilengkapi 

dengan confusion matrix dan visualisasi learning curve. 

Seluruh proses divisualisasikan dalam alur pada 

Gambar 1. 

 

Gambar 1. Alur Penelitian 

 

Pengumpulan Data 

Data yang digunakan dalam penelitian ini 

diperoleh dari platform Kaggle dengan judul “Penyakit 

Paru-Paru 5 Kelas”, yang dapat diakses melalui tautan 

https://www.kaggle.com/datasets/anjay007/penyakit-

paru-paru-5-kelas. Dataset ini berisi citra radiograf 

toraks (CXR) yang telah dikategorikan ke dalam lima 

kelas: 

1. bacterial_pneumonia 

2. covid19 

3. normal 

4. tuberculosis 

5. viral_pneumonia 

Dataset disusun dalam dua direktori utama, yaitu 

train_dir untuk data pelatihan dan test_dir untuk data 

pengujian, di mana masing-masing direktori berisi 

subfolder yang mewakili label kelas. Setelah diunduh, 

dataset diunggah ke Google Drive agar dapat diakses 

dan diolah langsung melalui Google Colaboratory 

selama proses pelatihan dan evaluasi model CNN. 

 

Eksplorasi dan Analisis Data 

Setelah memuat dataset, langkah pertama adalah 

mengeksplorasi struktur direktori dan menghitung 

jumlah citra pada setiap kelas di direktori pelatihan 

(train_dir). Tabel 1 menyajikan distribusi citra per 

kelas pada set pelatihan dan pengujian. 

 
Tabel 1 Distribusi Kelas 

Kelas Train_dir Test_dir 

covid19 1243 248 

Normal 1235 248 

tuberculosis 1170 248 

viral_pneumonia 1212 248 

bacterial_pneumonia 1220 248 

Total 6080 992 

 

Eksplorasi ini bertujuan untuk memahami 

distribusi data serta memastikan proporsi sampel yang 

seimbang antar kelas. Berdasarkan hasil tersebut, 

terdapat lima kategori—bacterial pneumonia, covid-19, 

normal, tuberculosis, dan viral pneumonia—dengan 

jumlah citra yang relatif seimbang. Distribusi jumlah 

citra per kelas pada set pelatihan divisualisasikan pada 

Gambar 2. 

 

 
Gambar 2. Distribusi Jumlah Gambar per Kelas pada 

Dataset Pelatihan 

 

Selanjutnya, contoh citra asli dari masing-masing 

kelas disajikan untuk mengevaluasi karakteristik visual 

tiap kategori. Visualisasi ini diperlukan untuk 

memverifikasi kualitas data serta mengidentifikasi 

potensi variasi tekstur, kontras, atau pencahayaan yang 

https://www.kaggle.com/datasets/anjay007/penyakit-paru-paru-5-kelas
https://www.kaggle.com/datasets/anjay007/penyakit-paru-paru-5-kelas
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dapat memengaruhi proses pelatihan model. Contoh 

citra per kelas dapat dilihat pada Gambar 3. 

 
 

Gambar 3. Contoh Citra per Kelas 

Preprocessing 

Tahapan preprocessing dilakukan sebelum data 

digunakan dalam proses pelatihan model CNN. 

Tujuannya adalah untuk memastikan konsistensi 

ukuran, kualitas, dan format citra agar sesuai dengan 

kebutuhan arsitektur pretrained yang digunakan. 

Adapun langkah-langkah preprocessing yang 

diterapkan dalam penelitian ini. 

 

A. Resize Citra 

Pada tahap ini, seluruh citra pada dataset diubah 

ukurannya menjadi resolusi tetap 224×224 piksel. 

Proses ini dilakukan secara otomatis menggunakan 

parameter target_size=(224, 224) pada objek 

ImageDataGenerator. Tujuannya adalah untuk 

memastikan setiap citra memiliki dimensi yang 

konsisten dan sesuai dengan format input standar 

model CNN pretrained. Secara matematis, proses 

perubahan resolusi dapat dinyatakan dengan fungsi 

transformasi spasial sebagai berikut: 

 
Dimana: 

 : intensitas piksel pada koordinat dari citra asli 

 : intensitas piksel pada koordinat dari 

citra hasil resize 

 : lebar dan tinggi citra asli 

 : lebar dan tinggi citra setelah resize (dalam hal 

ini 224×224) 

 

B. CLAHE (Contrast Limited Adaptive Histogram 

Equalization) 

CLAHE (Contrast Limited Adaptive Histogram 

Equalization) adalah metode peningkatan kontras lokal 

yang bekerja dengan membagi gambar menjadi 

beberapa blok kecil (tiles), lalu melakukan ekualisasi 

histogram pada masing-masing blok. Teknik ini 

digunakan untuk menonjolkan detail penting pada citra 

radiograf toraks, khususnya di area paru-paru, agar 

model CNN dapat mengenali pola-pola penyakit 

secara lebih efektif. Dalam penelitian ini, CLAHE 

diterapkan pada masing-masing kanal warna (R, G, B) 

secara independen, kemudian digabungkan kembali 

menjadi citra RGB. 

CLAHE bekerja dengan prinsip dasar Histogram 

Equalization terbatas, menggunakan fungsi CDF 

(Cumulative Distribution Function) dari histogram 

lokal, sebagai berikut: 

 
Dimana: 

 : histogram nilai intensitas ke-j dalam blok lokal 

 : jumlah total piksel dalam blok 

 : probabilitas kumulatif untuk intensitas i 

 

Nilai CDF kemudian digunakan untuk menentukan 

nilai intensitas baru. CLAHE membatasi amplifikasi 

kontras melalui clip limit, sehingga mencegah noise 

diperbesar secara berlebihan. Hasil citra yang telah 

diterapkan CLAHE ditampilkan pada Gambar 3. 

 

 
 

Gambar 3. Contoh Gambar Hasil Preprocessing 

CLAHE (RGB) 

 

C. Arsitektur CNN 

Setiap arsitektur CNN pretrained memiliki fungsi 

preprocessing yang berbeda-beda. Fungsi ini 

diperlukan untuk menyesuaikan format input citra 

dengan distribusi data yang digunakan saat model 
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tersebut dilatih pertama kali pada dataset ImageNet. 

Oleh karena itu, penelitian ini menggunakan fungsi 

Proses preprocessing yang spesifik untuk setiap 

arsitektur, yang secara otomatis melakukan 

normalisasi skala nilai piksel, pengurangan rata-rata 

kanal, atau transformasi lainnya. 

1. VGG16 dan ResNet50 (menggunakan mean 

subtraction): 

 
2. MobileNetV2 dan EfficientNet (menggunakan 

skala [-1, 1]): 

 
3. DenseNet121 (menggunakan skala [0, 1]): 

 
 

D. Normalisasi Nilai Piksel 

Normalisasi nilai piksel merupakan proses penting 

dalam preprocessing citra sebelum dimasukkan ke 

dalam jaringan CNN. Tujuan dari normalisasi adalah 

untuk menyamakan skala nilai piksel agar sesuai 

dengan standar input model CNN pretrained, sehingga 

memudahkan proses pembelajaran dan mempercepat 

konvergensi selama pelatihan. Normalisasi ini tidak 

dilakukan secara manual, melainkan sudah termasuk 

dalam fungsi preprocess_input yang digunakan pada 

masing-masing arsitektur CNN. 

Terdapat beberapa metode normalisasi yang 

digunakan oleh arsitektur CNN pretrained, antara lain: 

1. Skala ke [0, 1] (seperti pada DenseNet): 

 
2. Skala ke [-1, 1] (seperti pada MobileNetV2 dan 

EfficientNet): 

 
3. Pengurangan rata-rata (mean subtraction) (seperti 

pada VGG16 dan ResNet): 

 
 

E. Generator Preprocessing untuk Testing 

Pada tahap evaluasi, preprocessing data uji 

dilakukan dengan cara yang seragam dan konsisten, 

namun tanpa augmentasi. Hal ini penting untuk 

memastikan bahwa hasil evaluasi model 

mencerminkan kemampuan generalisasi terhadap data 

asli, bukan terhadap data yang telah dimodifikasi 

secara acak seperti pada tahap pelatihan. Oleh karena 

itu, digunakan objek ImageDataGenerator khusus 

untuk data testing yang hanya menerapkan fungsi 

preprocessing bawaan arsitektur, tanpa rotasi, 

pergeseran, atau flipping. 

 

Augmentasi Data 

Augmentasi data merupakan teknik yang 

digunakan untuk memperluas jumlah dan variasi data 

pelatihan secara artifisial tanpa menambah data baru 

secara manual. Tujuannya adalah untuk meningkatkan 

generalisasi model, mengurangi overfitting, dan 

membantu model mengenali objek pada berbagai 

kondisi. Dalam penelitian ini, augmentasi hanya 

diterapkan pada data pelatihan (train_dir) dan tidak 

pada data pengujian. 

Augmentasi dilakukan menggunakan kelas 

ImageDataGenerator dari pustaka Keras, yang 

memungkinkan transformasi citra secara real-time saat 

pelatihan berlangsung. 

Jenis Transformasi Augmentasi yang Digunakan: 

1. Rotasi Acak hingga ±20 derajat: 

2. Perpindahan Horizontal dan Vertikal (shift 10%): 

3. Shear (kemiringan) hingga 10%: 

Transformasi bentuk paralelogram 

4. Zoom hingga ±10%: 

Pembesaran atau pengecilan area fokus citra 

5. Flipping Horizontal: 

Pencerminan citra secara horizontal untuk 

mengubah arah tampilan 

6. Fill Mode: 

Mengisi area kosong akibat transformasi dengan 

metode nearest (mengambil piksel terdekat) 

Augmentasi diterapkan melalui parameter dalam 

ImageDataGenerator, artinya transformasi terjadi 

secara acak selama proses training, dan berbeda untuk 

setiap batch. 

 

Penanganan Ketidakseimbangan Kelas 

Dataset yang digunakan dalam penelitian ini 

memiliki distribusi jumlah citra yang tidak sepenuhnya 

seimbang di antara kelima kelas. Ketidakseimbangan 

kelas seperti ini berpotensi menyebabkan model terlalu 

fokus pada kelas mayoritas dan mengabaikan kelas 

minoritas, sehingga menghasilkan prediksi yang bias. 

Untuk mengatasi hal tersebut, diterapkan metode 

class weighting, yaitu pemberian bobot pelatihan yang 

berbeda pada setiap kelas berdasarkan proporsi jumlah 

sampelnya. Kelas dengan jumlah sampel lebih sedikit 

akan diberikan bobot lebih besar agar kontribusinya 

terhadap fungsi loss setara dengan kelas mayoritas. 

Teknik ini diimplementasikan menggunakan fungsi 

compute_class_weight dari pustaka scikit-learn. Bobot 

kelas dihitung menggunakan rumus: 

 
Dimana: 

 : bobot untuk kelas ke-k 

 : total jumlah sampel 

 : jumlah total kelas 

 : jumlah sampel pada kelas ke-k 
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Bobot yang diperoleh kemudian diterapkan ke 

parameter class_weight saat proses pelatihan model. 

Hasil perhitungan untuk masing-masing kelas dalam 

dataset ditampilkan pada Tabel 2. 
 

Tabel 2. Bobot Kelas Hasil Perhitungan 

compute_class_weight 

Label Kelas Bobot Kelas 

0 (bacterial_pneumonia) 0.9967 

1 (covid19) 0.9783 

2 (normal) 0.9846 

3 (tuberculosis) 1.0393 

4 (viral_pneumonia) 1.0033 

 

Pemilihan dan Pembangunan Arsitektur CNN 

Penelitian ini menggunakan pendekatan transfer 

learning dengan memanfaatkan lima arsitektur CNN 

pretrained yang telah terbukti efektif dalam berbagai 

tugas klasifikasi citra, khususnya pada domain medis. 

Kelima arsitektur yang digunakan adalah VGG16, 

ResNet50, EfficientNetB0, DenseNet121, dan 

MobileNetV2. Pemilihan arsitektur ini didasarkan 

pada popularitas, performa, efisiensi komputasi, dan 

ketersediaan bobot pralatih (pretrained weights) dari 

dataset ImageNet. 

Setiap model dimodifikasi dengan menghapus 

lapisan atas (top layer) dan menggantinya dengan 

struktur klasifikasi baru agar dapat disesuaikan dengan 

jumlah kelas pada dataset, yaitu lima kelas penyakit 

paru-paru. Proses ini dilakukan dengan menambahkan 

classification head yang terdiri dari lapisan pooling, 

dense, dropout, dan output softmax. 

Lapisan tambahan yang diterapkan pada setiap 

arsitektur meliputi: 

1. GlobalAveragePooling2D() 

2. Dense(512, activation='relu') 

3. Dropout(0.5) 

4. Dense(5, activation='softmax') 

Struktur ini diterapkan secara konsisten pada 

kelima arsitektur CNN untuk menjaga keadilan dalam 

proses evaluasi dan perbandingan performa. 

 

Pelatihan Model CNN 

Model CNN yang telah dibangun pada masing-

masing arsitektur kemudian dilatih menggunakan data 

yang telah melalui proses preprocessing dan 

augmentasi. Untuk memastikan evaluasi performa 

yang menyeluruh, pelatihan dilakukan dalam empat 

eksperimen berbeda berdasarkan variasi jumlah epoch, 

yaitu 5, 10, 15, dan 30 epoch. Tujuannya adalah untuk 

mengamati pengaruh durasi pelatihan terhadap 

performa model. 

Setiap proses pelatihan model dilengkapi dengan 

tiga jenis callback, yaitu: 

1. ModelCheckpoint: menyimpan model terbaik 

berdasarkan nilai validation accuracy tertinggi. 

2. EarlyStopping: menghentikan pelatihan lebih awal 

apabila model tidak menunjukkan peningkatan 

performa dalam beberapa epoch berturut-turut. 

3. ReduceLROnPlateau: menurunkan nilai learning 

rate secara otomatis ketika performa validasi 

stagnan, guna menghindari local minima. 

Proses pelatihan diulang sebanyak empat kali 

untuk masing-masing jumlah epoch yang telah 

ditentukan. Hasil dari setiap pelatihan, termasuk nilai 

akurasi dan loss validasi, disimpan untuk dianalisis 

lebih lanjut pada tahap evaluasi. 

 

Evaluasi Model 

Setelah proses pelatihan selesai, performa setiap 

model CNN dievaluasi menggunakan data pengujian 

(test set) yang telah diproses tanpa augmentasi. 

Evaluasi dilakukan untuk keempat eksperimen jumlah 

epoch (5, 10, 15, dan 30) pada masing-masing 

arsitektur. Penilaian dilakukan secara menyeluruh 

menggunakan empat metrik utama, yaitu: 

1. Akurasi (Accuracy): 

Akurasi digunakan sebagai metrik utama untuk 

membandingkan performa model pada setiap 

variasi jumlah epoch. Rumus akurasi didefinisikan 

sebagai: 

 
2. Presisi (Precision): 

Mengukur proporsi prediksi yang benar pada kelas 

tertentu terhadap semua prediksi yang dibuat untuk 

kelas tersebut. 

 
3. Recall (Sensitivitas): 

Mengukur kemampuan model dalam menemukan 

seluruh sampel dari kelas tertentu. 

 
4. F1-Score: Merupakan rata-rata harmonik antara 

precision dan recall, yang digunakan untuk menilai 

trade-off antara keduanya: 

 
Confusion Matrix juga digunakan untuk 

memberikan gambaran visual tentang jumlah prediksi 

benar dan salah untuk masing-masing kelas, serta 

untuk mengidentifikasi pola kesalahan yang konsisten.  

Untuk memantau proses pelatihan, dilakukan 

visualisasi terhadap validation accuracy dan validation 

loss dari keempat eksperimen. Kurva ini membantu 
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mengevaluasi stabilitas model selama proses training 

dan mendeteksi overfitting atau underfitting. 

 

Penentuan Model Terbaik 

Setelah seluruh model selesai dilatih dan dievaluasi, 

langkah terakhir adalah menentukan model terbaik 

dari masing-masing arsitektur berdasarkan performa 

klasifikasinya. Kriteria utama yang digunakan dalam 

pemilihan ini adalah nilai validation accuracy tertinggi, 

yaitu akurasi model pada data validasi selama 

pelatihan. 

Dari empat eksperimen jumlah epoch (5, 10, 15, 

dan 30), nilai validation accuracy tertinggi pada 

masing-masing model dicatat dan dibandingkan. 

Model dengan akurasi validasi terbaik dianggap 

sebagai representasi performa optimal dari arsitektur 

tersebut. 

Selain akurasi, metrik tambahan seperti f1-score 

per kelas, confusion matrix, dan stabilitas learning 

curve juga diperhatikan untuk mendukung keputusan 

akhir dan menghindari bias terhadap satu metrik saja. 

Hasil akhir dari tahap ini akan digunakan untuk 

membandingkan performa antar arsitektur dan 

menentukan arsitektur CNN yang paling optimal untuk 

tugas klasifikasi penyakit paru-paru pada citra 

radiograf toraks. 

 

IV. HASIL DAN PEMBAHASAN 

Hasil Evaluasi Tiap Arsitektur CNN 

A. VGG16 

Model VGG16 dievaluasi melalui empat skenario 

jumlah epoch (5, 10, 15, dan 30). Hasil pelatihan dan 

validasi menunjukkan bahwa kinerja model bervariasi 

pada setiap konfigurasi epoch. Untuk mengetahui tren 

pembelajaran model, dilakukan visualisasi learning 

curve berupa akurasi dan loss pada data validasi 

sebagaimana ditunjukkan pada Gambar 6. 

 
Gambar 6. Learning Curve Model VGG16 pada 

Data Validasi 

 

Gambar ini menampilkan grafik perbandingan 

akurasi dan loss validasi pada setiap epoch. Terlihat 

bahwa pada epoch ke-15, model mencapai akurasi 

validasi tertinggi dan loss yang rendah secara stabil. 

Evaluasi lebih lanjut dilakukan menggunakan 

confusion matrix untuk melihat distribusi prediksi 

terhadap ground truth dari masing-masing kelas. 

Confusion matrix ini divisualisasikan pada Gambar 7. 

 

 
 

Gambar 7. Confusion Matrix Model VGG16 pada 

Data Uji 

 

Gambar ini menunjukkan performa klasifikasi 

model dalam memetakan setiap kelas penyakit paru-

paru. Terlihat bahwa pada epoch ke-15, model berhasil 

meminimalkan kesalahan klasifikasi khususnya pada 

kelas viral pneumonia, yang sebelumnya banyak 

tertukar dengan bacterial pneumonia. Nilai metrik 

evaluasi dari tiap konfigurasi epoch untuk model 

VGG16 dapat dilihat pada Tabel 3. 

 

Tabel 3. Hasil Evaluasi Model VGG16 pada Data 

Uji 

Epoch Accuracy Precision Recall F1-

Score 

5 0.8548 0.88 0.86 0.85 

10 0.8861 0.92 0.89 0.89 

15 0.9395 0.95 0.94 0.94 

30 0.9183 0.93 0.92 0.92 

 

Dari tabel tersebut terlihat bahwa model VGG16 

mencapai performa terbaik pada epoch ke-15 dengan 

akurasi sebesar 93.95% dan F1-Score sebesar 0.94, 

menjadikannya sebagai konfigurasi optimal dari 

arsitektur ini. 

 

B. EfficientNetB0 

Model EfficientNetB0 dievaluasi melalui empat 

skenario jumlah epoch (5, 10, 15, dan 30). Hasil 

pelatihan dan validasi menunjukkan bahwa performa 

model meningkat seiring penambahan jumlah epoch, 

meskipun terdapat fluktuasi pada beberapa kelas 

tertentu. Untuk mengetahui tren pembelajaran model, 

dilakukan visualisasi learning curve berupa akurasi 

dan loss pada data validasi sebagaimana ditunjukkan 

pada Gambar 8. 
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Gambar 8. Learning Curve Model EfficientNetB0 

pada Data Validasi 

 

Gambar ini menampilkan grafik perbandingan 

akurasi dan loss validasi pada setiap epoch. Terlihat 

bahwa pada epoch ke-30, model memperoleh nilai 

akurasi validasi tertinggi secara konsisten dengan nilai 

loss yang cenderung stabil, menandakan pelatihan 

yang konvergen. 

Evaluasi lebih lanjut dilakukan menggunakan 

confusion matrix untuk melihat distribusi prediksi 

terhadap ground truth dari masing-masing kelas. 

Confusion matrix ini divisualisasikan pada Gambar 9. 

 

 
 

Gambar 9. Confusion Matrix Model EfficientNetB0 
pada Data Uji 

 

Gambar ini menunjukkan performa klasifikasi 

model dalam membedakan lima kelas penyakit paru-

paru. Terlihat bahwa meskipun akurasi secara 

keseluruhan meningkat, pada beberapa epoch awal 

model masih mengalami kesalahan klasifikasi 

signifikan khususnya pada kelas viral pneumonia. 

Namun pada epoch ke-30, prediksi mulai membaik 

untuk seluruh kelas. 

Nilai metrik evaluasi dari tiap konfigurasi epoch 

untuk model EfficientNetB0 dapat dilihat pada Tabel 4. 

 
Tabel 4. Hasil Evaluasi Model EfficientNetB0 pada Data 

Uji 

Epoch Accuracy Precision Recall F1-

Score 

5 0.790 0.83 0.79 0.78 

10 0.832 0.87 0.83 0.82 

15 0.830 0.88 0.83 0.82 

30 0.836 0.88 0.84 0.82 

 

Tabel 4 tersebut terlihat bahwa model 

EfficientNetB0 mencapai performa terbaik pada epoch 

ke-30 dengan akurasi sebesar 83.57% dan F1-Score 

sebesar 0.82, menjadikannya sebagai konfigurasi 

optimal dari arsitektur ini. 

 

C. DenseNet121 

Model DenseNet121 dievaluasi dengan empat 

variasi epoch (5, 10, 15, dan 30) guna mengamati 

kestabilan performa model dalam proses pelatihan. 

Hasil training dan validasi kemudian divisualisasikan 

dalam bentuk grafik learning curve, seperti yang 

ditunjukkan pada Gambar 10. 

 
Gambar 10. Learning Curve Model DenseNet121 pada 

Data Validasi 

 

Gambar ini menunjukkan fluktuasi nilai akurasi 

dan loss pada data validasi untuk setiap konfigurasi 

epoch. Dapat dilihat bahwa pada epoch ke-15, model 

mencapai akurasi validasi tertinggi disertai penurunan 

nilai loss yang relatif stabil. 

Evaluasi performa klasifikasi lebih lanjut 

dilakukan melalui confusion matrix untuk mengetahui 

detail prediksi terhadap masing-masing kelas. Hasil 

visualisasi confusion matrix ditampilkan pada Gambar 

11. 

 

 
 

Gambar 11. Confusion Matrix Model DenseNet121 

pada Data Uji 
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Confusion matrix ini menunjukkan distribusi 

prediksi model terhadap lima kelas penyakit paru-paru. 

Kinerja terbaik dicapai pada epoch ke-15, di mana 

model berhasil mempertahankan akurasi tinggi serta 

mengurangi kesalahan klasifikasi, khususnya pada 

kelas viral pneumonia. 

Nilai metrik evaluasi akurasi, precision, recall, dan 

F1-score dari keempat eksperimen epoch disajikan 

pada Tabel 5. 

 

Tabel 5. Hasil Evaluasi Model DenseNet121 pada 

Data Uji 

Epoch Accuracy Precision Recall F1-

Score 

5 0.8306 0.85 0.83 0.83 

10 0.8438 0.87 0.85 0.85 

15 0.8468 0.87 0.85 0.85 

30 0.8448 0.87 0.85 0.84 

 

Berdasarkan Tabel 5, dapat disimpulkan bahwa 

konfigurasi DenseNet121 dengan 15 epoch 

memberikan hasil terbaik dengan akurasi mencapai 

84.68% dan nilai F1-Score sebesar 0.85, 

menjadikannya konfigurasi optimal pada arsitektur ini. 

 

D. MobileNetV2 

Model MobileNetV2 dievaluasi melalui empat 

skenario jumlah epoch (5, 10, 15, dan 30). Hasil 

pelatihan dan validasi menunjukkan bahwa performa 

terbaik diperoleh pada epoch ke-5. Untuk mengetahui 

tren pembelajaran model, dilakukan visualisasi 

learning curve berupa akurasi dan loss pada data 

validasi sebagaimana ditunjukkan pada Gambar 12. 

 

 

 
 

Gambar 12. Learning Curve Model MobileNetV2 

pada Data Validasi 

 

Gambar ini menampilkan perbandingan akurasi 

dan loss validasi untuk setiap konfigurasi epoch. 

Terlihat bahwa model dengan epoch ke-5 memiliki 

akurasi validasi tertinggi secara konsisten dan nilai 

loss yang rendah. 

Evaluasi lanjutan dilakukan melalui visualisasi 

confusion matrix untuk setiap konfigurasi epoch. 

Confusion matrix ini memberikan gambaran distribusi 

prediksi model terhadap ground truth dan ditampilkan 

pada Gambar 13. 

 

. 

Gambar 13. Confusion Matrix Model MobileNetV2 

pada Data Uji 

 

Gambar menunjukkan bahwa pada epoch ke-5 

model memiliki akurasi klasifikasi terbaik, terutama 

dalam mengklasifikasikan kelas viral pneumonia dan 

bacterial pneumonia yang sebelumnya sering tertukar. 

Nilai metrik evaluasi (akurasi, precision, recall, 

dan F1-score) untuk masing-masing epoch ditampilkan 

dalam Tabel 6. 

 

Tabel 6. Hasil Evaluasi Model MobileNetV2 pada 

Data Uji 

Epoch Accuracy Precision Recall F1-

Score 

5 0.8831 0.90 0.88 0.89 

10 0.8821 0.90 0.88 0.89 

15 0.8377 0.88 0.84 0.84 

30 0.8236 0.88 0.82 0.82 

 

 

Berdasarkan tabel tersebut, MobileNetV2 

mencapai performa terbaik pada epoch ke-5 dengan 

akurasi sebesar 88.31% dan F1-Score 0.89, 

menjadikannya konfigurasi paling optimal dari 

arsitektur ini. 

 

E. ResNet50 

Model ResNet50 dievaluasi dengan empat skenario 

jumlah epoch yaitu 5, 10, 15, dan 30. Setiap model 

dilatih menggunakan strategi preprocessing, 

augmentasi data, dan class weighting yang seragam. 

Untuk melihat performa pembelajaran model pada 

data validasi, digunakan visualisasi learning curve 

berupa grafik akurasi dan loss seperti ditunjukkan pada 

Gambar 12. 
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Gambar 12. Learning Curve Model ResNet50 pada 

Data Validasi 

 

Gambar ini menunjukkan perkembangan akurasi 

dan loss validasi dari keempat konfigurasi epoch. 

Terlihat bahwa pada epoch ke-10, akurasi validasi 

mencapai nilai tertinggi sebesar 0.8669 dengan tren 

loss yang stabil dan relatif rendah dibandingkan 

konfigurasi lainnya. 

Untuk mengetahui tingkat akurasi klasifikasi pada 

masing-masing kelas, digunakan confusion matrix 

sebagaimana ditampilkan pada Gambar 13. 

 

 
 

Gambar 13. Confusion Matrix Model ResNet50 pada 

Data Uji 

 

Gambar ini memperlihatkan performa klasifikasi 

model pada lima kelas penyakit paru-paru. Confusion 

matrix memperlihatkan bahwa model pada epoch ke-

10 mampu mengklasifikasikan kelas normal, 

tuberculosis, dan covid19 dengan tingkat akurasi yang 

tinggi, serta mengurangi kesalahan klasifikasi pada 

kelas viral pneumonia. 

Seluruh metrik evaluasi dari model ResNet50 

untuk keempat konfigurasi epoch disajikan pada Tabel 

6. 

 

Tabel 6. Hasil Evaluasi Model ResNet50 pada 

Data Uji 

Epoch Accuracy Precision Recall F1-

Score 

5 0.8407 0.88 0.85 0.84 

10 0.8669 0.89 0.87 0.87 

15 0.8639 0.90 0.87 0.87 

30 0.8377 0.89 0.85 0.84 

 

Dari hasil pada tabel tersebut, diketahui bahwa 

konfigurasi epoch ke-10 memberikan hasil terbaik 

dengan akurasi sebesar 86.69% dan F1-Score sebesar 

0.87, sehingga model pada epoch ini ditetapkan 

sebagai versi terbaik untuk arsitektur ResNet50. 

 

KESIMPULAN DAN SARAN 

A. KESIMPULAN 

Penelitian ini telah berhasil mengeksplorasi dan 

mengevaluasi performa lima arsitektur Convolutional 

Neural Network (CNN) pretrained—yaitu VGG16, 

ResNet50, EfficientNetB0, DenseNet121, dan 

MobileNetV2—dalam tugas klasifikasi multi-kelas 

citra radiograf toraks (CXR) penyakit paru-paru. 

Proses klasifikasi dilakukan terhadap lima kategori 

penyakit, yakni bacterial pneumonia, COVID-19, 

tuberculosis, viral pneumonia, dan kondisi normal. 

Beberapa poin kesimpulan yang dapat diambil dari 

hasil penelitian ini adalah 

1. Penggunaan metode preprocessing berbasis 

CLAHE pada kanal warna RGB secara signifikan 

meningkatkan kualitas kontras citra dan 

menonjolkan fitur jaringan paru-paru. Kombinasi 

ini, bersama dengan normalisasi input sesuai 

arsitektur CNN, berkontribusi besar dalam 

memperkuat proses pembelajaran model. 

2. Augmentasi data terbukti mampu meningkatkan 

kemampuan generalisasi model terhadap variasi 

bentuk dan intensitas citra, sedangkan penerapan 

class weighting berhasil mengatasi 

ketidakseimbangan distribusi kelas pada dataset, 

sehingga menghindari bias klasifikasi terhadap 

kelas mayoritas. 

3. Berdasarkan hasil evaluasi terhadap empat metrik 

utama (akurasi, precision, recall, dan F1-score), 

arsitektur VGG16 dengan 15 epoch menunjukkan 

performa klasifikasi terbaik dengan akurasi 

mencapai 93,95% dan F1-score sebesar 0,94. 

Model ini mampu secara konsisten meminimalkan 

kesalahan klasifikasi, khususnya pada kelas viral 

pneumonia yang kerap mengalami tumpang tindih 

visual dengan kelas lain. 

4. Model MobileNetV2 menunjukkan kinerja 

kompetitif pada epoch ke-5 (akurasi 88,31%), 

menjadikannya alternatif efisien untuk sistem 

dengan keterbatasan komputasi. ResNet50 dan 

DenseNet121 juga menunjukkan hasil yang baik 

secara umum, meskipun tidak melampaui VGG16. 

Sementara itu, EfficientNetB0 menunjukkan 
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stabilitas pelatihan, namun dengan performa 

klasifikasi yang relatif lebih rendah (akurat hingga 

83,57%). 

5. Seluruh arsitektur yang digunakan memanfaatkan 

strategi transfer learning dari bobot pralatih 

ImageNet, yang terbukti mampu mempercepat 

proses pelatihan dan meningkatkan akurasi model 

meski jumlah data tidak terlalu besar. Hal ini 

menunjukkan bahwa pemanfaatan model 

pretrained sangat efektif dalam domain medis, 

khususnya pada citra radiografi toraks. 

 

B. SARAN 

Berdasarkan hasil penelitian dan analisis yang telah 

dilakukan, beberapa saran dapat diajukan untuk 

pengembangan penelitian lanjutan dan penerapan 

sistem klasifikasi CXR secara lebih luas: 

1. Untuk meningkatkan kepercayaan klinis, 

disarankan agar penelitian selanjutnya 

mengintegrasikan teknik Explainable AI seperti 

Grad-CAM atau LIME untuk memvisualisasikan 

area citra yang menjadi dasar keputusan model. Ini 

penting dalam konteks medis agar hasil klasifikasi 

dapat diverifikasi secara visual oleh tenaga 

kesehatan. 

2. Penelitian ini terbatas pada satu dataset dari Kaggle. 

Untuk memperoleh generalisasi yang lebih kuat, 

disarankan untuk memperluas dataset dengan citra 

dari berbagai sumber rumah sakit atau institusi 

medis lainnya. Validasi eksternal menggunakan 

data dunia nyata akan memperkuat kredibilitas 

sistem yang dikembangkan. 

3. Meskipun VGG16 menunjukkan hasil terbaik, 

eksplorasi terhadap arsitektur mutakhir lainnya 

seperti EfficientNetV2, Vision Transformer (ViT), 

atau strategi ensembel (kombinasi model) 

berpotensi meningkatkan performa klasifikasi lebih 

lanjut. 

4. Untuk meningkatkan fokus model pada area yang 

relevan, penelitian mendatang dapat 

mempertimbangkan penerapan segmentasi paru 

sebelum klasifikasi, guna menghilangkan informasi 

latar belakang yang tidak diperlukan. 

5. Hasil penelitian ini memiliki potensi untuk 

diimplementasikan dalam sistem decision support 

untuk klinik atau rumah sakit, baik dalam bentuk 

web-based diagnostic tools maupun integrasi ke 

dalam sistem PACS. Oleh karena itu, disarankan 

pengembangan sistem antarmuka yang ramah 

pengguna (user-friendly interface) bagi tenaga 

medis. 
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