PLATFORM AI HOLISTIK PREDIKTIF UNTUK MANAJEMEN KARIER BERBASIS KOMPETENSI PADA PERGURUAN TINGGI SWASTA
Abstract
Penelitian ini bertujuan untuk merancang dan mengembangkan Talent Guardian (ATAGA-JPT), sebuah platform kecerdasan buatan (AI) prediktif yang dirancang untuk mendukung penerapan meritokrasi jabatan pada perguruan tinggi swasta. Sistem ini mengintegrasikan data kepegawaian, kinerja dosen, serta rekam jejak kompetensi untuk menghasilkan rekomendasi berbasis prediksi terhadap jabatan fungsional maupun struktural. Metode penelitian menggunakan pendekatan Research and Development (R&D) yang mencakup tahapan analisis kebutuhan, perancangan sistem, pengembangan model prediktif berbasis machine learning, serta validasi melalui uji performa model. Hasil penelitian menunjukkan bahwa ATAGA-JPT mampu memetakan profil talenta dan memprediksi kesiapan jabatan secara objektif dengan tingkat akurasi 92,6% menggunakan algoritma Gradient Boosting, serta reliabilitas instrumen α = 0,856. Penerapan sistem ini berpotensi memperkuat tata kelola sumber daya manusia berbasis kinerja, mengurangi bias subjektif dalam pengangkatan jabatan, dan mendukung transformasi digital manajemen talenta di lingkungan perguruan tinggi swasta.
Full Text:
PDFReferences
M. D. Nadeem, S. Hassan, and A. Karim, “Meritocracy and leadership performance evaluation in academic institutions,” International Journal of Management Education, vol. 20, no. 3, pp. 150–161, 2023.
Kemendikbudristek, “Laporan Transformasi Digital Perguruan Tinggi di Indonesia,” Jakarta: Pusdatin Dikti, 2024.
J. H. Park and T. Lee, “Artificial Intelligence in Higher Education Governance: Predictive Models for Faculty Evaluation,” Computers & Education, vol. 191, pp. 104–153, 2023.
S. Y. Chen and P. K. Wong, “AI-Driven Decision Support in University HR Systems,” Journal of Educational Technology Systems, vol. 52, no. 1, pp. 45–61, 2024.
C. H. Lee, B. R. Kim, and L. Xu, “Machine Learning Approaches for Predicting Academic Staff Performance,” IEEE Access, vol. 11, pp. 13302–13315, 2023.
Y. Zhao and P. Kumar, “Hybrid Artificial Intelligence Models for Talent Evaluation Systems,” Expert Systems with Applications, vol. 234, no. 1, pp. 120–138, 2024.
W. R. Borg and M. D. Gall, Educational Research: An Introduction, 9th ed., New York: Longman, 2022.
S. Rahman and T. Mulyono, “Designing Predictive Analytics Architecture for Human Resource Systems,” Indonesian Journal of Information Systems, vol. 9, no. 2, pp. 102–114, 2023.
M. T. Alotaibi and J. S. Lee, “Comparative Analysis of Machine Learning Algorithms for Talent Readiness Prediction,” IEEE Access, vol. 11, pp. 45322–45335, 2023.
L. A. Tavakol and R. Dennick, “Making Sense of Cronbach’s Alpha,” International Journal of Medical Education, vol. 12, no. 4, pp. 53–55, 2021.
Z. Wang, X. Li, and P. Kumar, “Cross-Validation Evaluation in AI-Based Personnel Decision Systems,” Expert Systems with Applications, vol. 235, pp. 120–136, 2024.
D. Yani and Kusrini, “Feature Management Approaches and Predictive Methods in Machine Learning and Deep Learning for Student Performance Prediction: A Systematic Review,” G-Tech: Jurnal Teknologi Terapan, vol. 9, no. 1, 2025.
D. Irawan, “Mengurai Tantangan Perguruan Tinggi Swasta Menuju Unggul,” Suara Muhammadiyah, 2023.
A. A. R. Ali and R. N. B. Z. Al-Busaidi, “A Novel Framework for Decision Support System in Human Resource Management,” International Journal of Intelligent Decision Technologies, vol. 19, no. 4, 2025.
DOI: https://doi.org/10.46576/djtechno.v6i3.8012
Article Metrics
Abstract view : 0 timesPDF – 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Abe Wisnu Syaputra, Irma Yunita, Cecilia Cecilia, Nurul Sri Handini, Arif Setiadi, Akhmad Faisal Husni
DJTECHNO: Jurnal Teknologi Informasi Indexed By
Djtechno: Jurnal Teknologi Informasi published by :
PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA
Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783Â Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id
Djtechno: Jurnal Teknologi Informasi
Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License









