PENERAPAN ALGORITMA K-MEANS UNTUK KLASTERISASI POLA IKLIM STUDI KASUS: PROVINSI JAMBI PERIODE 2020-2024

Yandi Anzari, Yonggi Puriza, Niko Akbar, Nurul Abdillah, Oki Dahwanu, Elsi Alfionita Syawal

Abstract


Penelitian ini menerapkan algoritma K‑Means untuk mengidentifikasi pola iklim dominan di Provinsi Jambi pada periode Januari 2020 sampai Desember 2024. Dataset bulanan berjumlah 60 observasi yang memuat enam variabel meteorologi: curah hujan, suhu rata‑rata, suhu maksimum, suhu minimum, kecepatan angin, dan kelembaban relatif. Data diagregasi dari data harian menjadi bulanan dan dipra‑proses dengan standardisasi Z‑Score untuk mengatasi heterogenitas skala antar fitur. Penentuan jumlah klaster optimal dilakukan secara kuantitatif menggunakan Elbow Method berdasarkan nilai inersia, yang menunjukkan titik belok pada k=3. Model K‑Means diinisialisasi secara acak dan dijalankan dengan beberapa pengulangan untuk menilai stabilitas hasil; keluaran divisualisasikan dalam proyeksi 2D dan 3D untuk memudahkan interpretasi spasial. Analisis centroid mengidentifikasi tiga rezim iklim: rezim kering/transisi (curah hujan rendah dan suhu relatif tinggi), rezim monsonal normal (curah hujan menengah‑tinggi dan kelembaban tinggi), serta rezim basah ekstrem (curah hujan sangat tinggi dan kelembaban tinggi). Hasil ini menyediakan tipologi iklim berbasis data yang relevan untuk perencanaan pertanian, mitigasi bencana hidrometeorologi, dan kebijakan adaptasi iklim di tingkat provinsi.

Full Text:

PDF

References


J. Finley, B. Fosu, C. Fuhrmann, A. Mercer, and J. Rudzin, “Quantifying Downstream Climate Impacts of Sea Surface Temperature Patterns in the Eastern Tropical Pacific Using Clustering,” Climate, vol. 12, no. 5, May 2024, doi: 10.3390/cli12050071.

I. Rinaldi, “PENGGUNAAN ALGORITMA CLUSTERING K-MEANS UNTUK MENGELOMPOKKAN POLA CUACA,” 2025. [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR

G. Al-Rawas, M. R. Nikoo, N. Sadra, and F. Mousavi, “Integrated Quantile Mapping and Spatial Clustering for Robust Bias Correction of Satellite Precipitation in Data-Sparse Regions,” Sustainability, vol. 17, no. 18, p. 8321, Sep. 2025, doi: 10.3390/su17188321.

G. Andrian, T. Handhayani, and D. Arisandi, “CLUSTERING DATA METEOROLOGI WILAYAH INDONESIA TIMUR MENGGUNAKAN METODE K-MEANS,” 2024. [Online]. Available: https://dataonline.bmkg.go.id.

M. Billios and L. Vasiliades, “A Network-Based Clustering Method to Ensure Homogeneity in Regional Frequency Analysis of Extreme Rainfall,” Water (Switzerland), vol. 17, no. 1, Jan. 2025, doi: 10.3390/w17010038.

Q. Zhang and J. Qian, “Identification and Temporal Distribution of Typical Rainfall Types Based on K-Means++ Clustering and Probability Distribution Analysis,” Hydrology, vol. 12, no. 4, Apr. 2025, doi: 10.3390/hydrology12040088.

S. K. Roy, A. Morshed, P. Mojumder, M. M. Hasan, and A. K. M. S. Islam, “Innovative trend analysis technique with fuzzy logic and K-means clustering approach for identification of homogenous rainfall region: A long-term rainfall data analysis over Bangladesh,” Quaternary Science Advances, vol. 15, Sep. 2024, doi: 10.1016/j.qsa.2024.100227.

Fadil Danu Rahman, M. I. Z. Mulki, and A. Taryana, “CLUSTERING DAN KLASIFIKASI DATA CUACA CILACAP DENGAN MENGGUNAKAN METODE K-MEANS DAN RANDOM FOREST,” Jurnal SINTA: Sistem Informasi dan Teknologi Komputasi, vol. 1, no. 2, Apr. 2024, doi: 10.61124/sinta.v1i2.15.

N. Hasanah, M. Ugiarto, and N. Puspitasari, “SISTEM PENGELOMPOKAN CURAH HUJAN MENGGUNAKAN METODE K-MEANS DI WILAYAH KALIMANTAN TIMUR,” Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, vol. 2, no. 2, pp. 122–126, Sep. 2020.

J. S. Ramírez and N. D. Duque, “Evaluation of Unsupervised Machine Learning Algorithms with Climate Data,” Ingeniería y Desarrollo, vol. 40, no. 02, pp. 131–165, Dec. 2022, doi: 10.14482/inde.40.02.622.553.

G. Andrian, D. Arisandi, and T. Handhayani, “CLUSTERING DATA METEOROLOGI WILAYAH INDONESIA TIMUR DENGAN METODE K-MEANS DAN FUZZY C-MEANS,” INTI Nusa Mandiri, vol. 18, no. 2, pp. 100–106, Feb. 2024, doi: 10.33480/inti.v18i2.5039.

S. Khairunnisa and M. I. Jambak, “Pengelompokan Cuaca Kota Palembang Menggunakan Algoritma K-Means Clustering Untuk Mengetahui Pola Karakteristik Cuaca,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 4, p. 2352, Oct. 2022, doi: 10.30865/mib.v6i4.4810.

I. Prakaisak and P. Wongchaisuwat, “Article Hydrological Time Series Clustering: A Case Study of Telemetry Stations in Thailand,” Water (Switzerland), vol. 14, no. 13, Jul. 2022, doi: 10.3390/w14132095.

D. Lou et al., “K-means and c4.5 decision tree based prediction of long-term precipitation variability in the poyang lake basin, china,” Atmosphere (Basel), vol. 12, no. 7, Jul. 2021, doi: 10.3390/atmos12070834.

Z. Shi, L. Huang, F. Wu, Y. Lei, H. Wang, and Z. Tang, “An Improved Multi-Threshold Clutter Filtering Algorithm for W-Band Cloud Radar Based on K-Means Clustering,” Remote Sens (Basel), vol. 16, no. 24, Dec. 2024, doi: 10.3390/rs16244640.

J. Samper-Pilar, J. Samper-Calvete, A. Mon, B. Pisani, and A. Paz-González, “Machine Learning Analysis of Hydrological and Hydrochemical Data from the Abelar Pilot Basin in Abegondo (Coruña, Spain),” Hydrology, vol. 12, no. 3, Mar. 2025, doi: 10.3390/hydrology12030049.

Y. Chong and Q. Zeng, “Long-Term Ground Deformation Monitoring and Quantitative Interpretation in Shanghai Using Multi-Platform TS-InSAR, PCA, and K-Means Clustering,” Remote Sens (Basel), vol. 16, no. 22, Nov. 2024, doi: 10.3390/rs16224188.

Y. Latif, K. Fan, G. Wang, and M. Paluš, “Cross-scale causal information flow from the El Niño-Southern Oscillation to precipitation in eastern China,” Earth System Dynamics, vol. 15, no. 6, pp. 1509–1526, Nov. 2024, doi: 10.5194/esd-15-1509-2024.

L. Li, Y. Zhang, C. Xue, and Z. Zheng, “Object-Oriented Clustering Approach to Detect Evolutions of ENSO-Related Precipitation Anomalies over Tropical Pacific Using Remote Sensing Products,” Remote Sens (Basel), vol. 15, no. 11, Jun. 2023, doi: 10.3390/rs15112902.

G. Urgilés, R. Célleri, K. Trachte, J. Bendix, and J. Orellana-Alvear, “Clustering of rainfall types using micro rain radar and laser disdrometer observations in the tropical andes,” Remote Sens (Basel), vol. 13, no. 5, pp. 1–22, Mar. 2021, doi: 10.3390/rs13050991.

Q.-V. Doan, T. Amagasa, T.-H. Pham, T. Sato, F. Chen, and H. Kusaka, “Novel clustering framework using k-means (S k-means) for mining spatiotemporal structured climate data,” Sep. 07, 2022. doi: 10.5194/gmd-2022-172




DOI: https://doi.org/10.46576/djtechno.v6i3.7994

Article Metrics

Abstract view : 0 times
PDF – 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Yandi Anzari, Yonggi Puriza, Niko Akbar, Nurul Abdillah, Oki Dahwanu, Elsi Alfionita Syawal

DJTECHNO: Jurnal Teknologi Informasi Indexed By


MEMBER OF


Dedicated to :

Djtechno: Jurnal Teknologi Informasi published by :

PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA

Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783  Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id

Djtechno: Jurnal Teknologi Informasi

Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License