MODEL PREDIKSI PREVALENSI STUNTING DI PROVINSI ACEH MENGGUNAKAN PENDEKATAN REGRESI DENGAN EVALUASI KINERJA BERBASIS MSE DAN RMSE
Abstract
This study aims to develop a predictive model for stunting prevalence in Aceh Province using regression-based approaches, including Linear Regression, Polynomial Regression, Ridge Regression, and Lasso Regression. The dataset comprises stunting prevalence rates from 2019 to 2023 across 21 districts and cities in Aceh Province. The analysis projects prevalence trends up to 2031 and evaluates the model performance using Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). The results indicate that Polynomial Regression demonstrates the best predictive performance, with an average MSE of 0.0012 and RMSE of 0.0317, outperforming Linear Regression (MSE = 0.0039, RMSE = 0.0621), Ridge Regression (MSE = 0.0187, RMSE = 0.1324), and Lasso Regression (MSE = 0.0039, RMSE = 0.0621). The prediction results suggest a gradual decline in stunting prevalence across Aceh Province up to 2031, with an average annual decrease of approximately 1.2%. Therefore, Polynomial Regression can be considered a reliable and accurate model for analyzing and forecasting regional stunting prevalence trends.
Keywords
Full Text:
PDFReferences
A. Rahman, Z. Zulkifli, A. Andika, S. Khadijah, I. Dwi, and C. Nana, “Program Edukasi Kesadaran dan Pengetahuan Stunting Masyarakat Desa Meunasah Rayeuk Aceh Utara,” Jurnal Pengabdian Masyarakat Bangsa, vol. 1, no. 10, pp. 2423–2433, 2023.
M. Hambal, H. Vanda, W. E. Sari, M. Akmal, D. Djufri, and S. Yusuf, “Pengurangan angka penderita stunting di Aceh Besar melalui edukasi, dukungan kebijakan pemerintah, dan pemberian probiotik,” Jurnal Pengabdian Aceh, vol. 4, no. 2, pp. 122–128, 2024.
R. K. Dinata, R. T. Adek, N. Hasdyna, and S. Retno, “K-nearest neighbor classifier optimization using purity,” in AIP Conference Proceedings, vol. 2431, no. 1, p. 080013, AIP Publishing LLC, Aug. 2023.
R. K. Dinata and A. M. Rizki, “Web-Based Asset Management Information System for Enhanced Asset Tracking at The Land Office of Bireuen District,” Jurnal Elektronika dan Teknologi Informasi, vol. 5, no. 1, pp. 14–20, 2024.
I. T. I. Fajri, H. L. Sari, S. Kom, M. Kom, R. K. Dinata, N. Hasdyna, and C. Fadhilah, Data Mining. Serasi Media Teknologi, 2024.
Z. Nozarijouybari and H. K. Fathy, “Machine learning for battery systems applications: Progress, challenges, and opportunities,” Journal of Power Sources, vol. 601, p. 234272, 2024.
R. W. Dwinanto and R. Ardianto, “Klasifikasi Berisiko Stunting pada Balita: Perbandingan K-Nearest Neighbor, Naïve Bayes, Support Vector Machine,” METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, vol. 8, no. 2, pp. 264–273, 2024.
R. D. Y. R. A., R. A. Muhadi, A. Fitrianto, and P. Silvianti, “Analisis Regresi Logistik Biner dan Random Forest untuk Prediksi Faktor-Faktor Stunting di Pulau Jawa,” Euler: Jurnal Ilmiah Matematika, Sains dan Teknologi, vol. 13, no. 2, pp. 147–156, 2025.
A. F. F. Nugroho, “Klasifikasi Stunting dan Status Gizi Balita dengan Metode SVM (Support Vector Machine),” Doctoral dissertation, Universitas Islam Sultan Agung Semarang, 2024.
N. Hasdyna, R. K. Dinata, Rahmi, and T. I. Fajri, “Hybrid Machine Learning for Stunting Prevalence: A Novel Comprehensive Approach to Its Classification, Prediction, and Clustering Optimization in Aceh, Indonesia,” Informatics, vol. 11, no. 4, p. 89, Nov. 2024.
S. Riyani, F. Kristianto, R. Wulandari, and J. Heikal, “Penerapan Metode Regresi Logistik Biner Dengan Menggunakan Phyton Untuk Menganalisa Pengguna Media Sosial Terhadap Probabilitas Pembukaan Rekening Pada Bank X,” Scientific Journal of Reflection: Economic, Accounting, Management and Business, vol. 7, no. 2, pp. 438–449, 2024.
L. P. Sofyan and D. B. D. Kependudukan, “Analisis Determinan Stunting di Kabupaten Bogor dan Kota Bogor: Pendekatan Spasial untuk Meningkatkan Efektivitas Intervensi,” Tesis, Departemen Biostatistik dan Kependudukan, 2024.
J. T. A. Togatorop, A. R. Chrismanto, and W. S. Raharjo, “Optimasi Akurasi Koefisien Pajak Kendaraan Bermotor di Indonesia Menggunakan Metode Klasifikasi dan Regres,” Jurnal Terapan Teknologi Informasi, vol. 9, no. 1, pp. 11–19, 2025.
I. Amansyah, J. Indra, E. Nurlaelasari, and A. R. Juwita, “Prediksi penjualan kendaraan menggunakan regresi linear: Studi kasus pada industri otomotif di Indonesia,” Innovative: Journal of Social Science Research, vol. 4, no. 4, pp. 1199–1216, 2024.
W. Wulandari, “Metode SVR Untuk Memprediksi Jumlah Pemakaian Air PDAM (Studi Kasus: Sub Unit Muntilan),” Doctoral dissertation, Universitas Muhammadiyah Magelang, 2025.
M. A. Dinata, H. Yenni, and W. Agustin, “Prediksi Jumlah Titik Ruang Terbuka Hijau (RTH) Menggunakan Metode Regresi Linier dan Model Random Forest,” BETRIK, vol. 16, no. 2, pp. 144–156, 2025.
DOI: https://doi.org/10.46576/djtechno.v6i3.7688
Article Metrics
Abstract view : 0 timesPDF – 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Novia Hasdyna
DJTECHNO: Jurnal Teknologi Informasi Indexed By
Djtechno: Jurnal Teknologi Informasi published by :
PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA
Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783Â Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id
Djtechno: Jurnal Teknologi Informasi
Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License









