PERAN DEEP LEARNING DAN BIG DATA DALAM MENDEKTEKSI MASALAH KEUANGAN

Dara Sawitri

Abstract


Pesatnya pertumbuhan data dan informasi pada saat ini telah membuat bidang keuangan banyak menghadapi tantangan dalam melakukan analisis informasi. Dengan kemampuan teknologi big data dan deep learning telah mengubah cara-cara operasional dibidang keuangan secara signifikan. Big data telah merevolusi cara pengelolaan bidang keuangan yaitu dengan menggunakan teknologi dalam mendeteksi masalah keuangan. Metode Deep learning dan big data telah membantu akan standarisasi dan pemodelan didalam proses keuangan agar meningkatkan pengambilan keputusan sekaligus memberikan peringatan dini akan risiko keuangan serta melakukan pengawasan dibidang keuangan. Dimana kedua teknologi ini mampu  memfasilitasi pemrosesan serta analisis data yang lebih mendalam sehingga dapat memberikan pandangan yang lebih luas dalam mendukung proses pengambilan keputusan dibidang keuangan. Peran big data dan deep learning dapat digunakan secara bersama untuk meningkatkan efisiensi dan akurasi analisis data serta memfasilitasi kemampuan analisis agar dapat mendeteksi masalah keuangan untuk kepentingan dunia usaha. Deep learning dengan menggunakan potensi big data berguna untuk  mengenali pola-pola abnormal tanpa campur tangan manusia. Pada penelitian ini menggunakan arsitektur CNN dan RNN dimana model LSTM juga GRU efektif dalam menangani data  untuk mendeteksi aktivitas resiko keuangan. Deep learning dapat mengenali anomali secara real-time dengan tingkat keandalan yang lebih tinggi serta mengoptimal keamanan data dan memaksimumkan pengelolaan risiko.

Full Text:

PDF

References


Z. Yi, X. Cao, Z. Chen, and S. Li, “Artificial Intelligence in Accounting and Finance: Challenges and Opportunities,” IEEE Access, vol. 11, pp. 129100–129123, 2023, doi: 10.1109/ACCESS.2023.3333389.

J. B. Heaton, N. G. Polson, and J. H. Witte, “Deep learning for finance: deep portfolios,” Jan. 01, 2017, John Wiley and Sons Ltd. doi: 10.1002/asmb.2209.

S. Cockcroft and M. Russell, “Big Data Opportunities for Accounting and Finance Practice and Research,” Sep. 01, 2018, Blackwell Publishing Ltd. doi: 10.1111/auar.12218.

Samuel Aderemi, David Olanrewaju Olutimehin, Uchenna Innocent Nnaomah, Omamode Henry Orieno, Tolulope Esther Edunjobi, and Sodiq Odetunde Babatunde, “Big data analytics in the financial services industry: Trends, challenges, and future prospects: A review,” International Journal of Science and Technology Research Archive, vol. 6, no. 1, pp. 147–166, Mar. 2024, doi: 10.53771/ijstra.2024.6.1.0036.

H. Sun, M. R. Rabbani, M. S. Sial, S. Yu, J. A. Filipe, and J. Cherian, “Identifying big data’s opportunities, challenges, and implications in finance,” Mathematics, vol. 8, no. 10, pp. 1–19, Oct. 2020, doi: 10.3390/math8101738.

F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed, “A Comprehensive Overview and Comparative Analysis on Deep Learning Models.”

I. K. Sastrawan, I. P. A. Bayupati, and D. M. S. Arsa, “Detection of fake news using deep learning CNN–RNN based methods,” ICT Express, vol. 8, no. 3, pp. 396–408, Sep. 2022, doi: 10.1016/j.icte.2021.10.003.

X. Zhang, F. Chen, and R. Huang, “A combination of RNN and CNN for attention-based relation classification,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 911–917. doi: 10.1016/j.procs.2018.04.221.

Y. Liang, D. Quan, F. Wang, X. Jia, M. Li, and T. Li, “Financial big data analysis and early warning platform: A case study,” IEEE Access, vol. 8, pp. 36515–36526, 2020, doi: 10.1109/ACCESS.2020.2969039.

M. Hosseinzadeh et al., “Data cleansing mechanisms and approaches for big data analytics: a systematic study,” J Ambient Intell Humaniz Comput, vol. 14, no. 1, pp. 99–111, Jan. 2023, doi: 10.1007/s12652-021-03590-2.

M. A. Oladipupo, P. C. Obuzor, B. J. Bamgbade, K. M. Olagunju, A. E. Adeniyi, and S. A. Ajagbe, “An Automated Python Script for Data Cleaning and Labeling using Machine Learning Technique,” Informatica (Slovenia), vol. 47, no. 6, pp. 219–232, 2023, doi: 10.31449/inf.v47i6.4474.

S. Vinay, “STANDARDIZATION IN MACHINE LEARNING.” [Online]. Available: https://www.researchgate.net/publication/349869617

D. Ruano-Ordás, “Machine Learning-Based Feature Extraction and Selection,” Aug. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/app14156567.

N. Kanungsukkasem and T. Leelanupab, “Financial Latent Dirichlet Allocation (FinLDA): Feature Extraction in Text and Data Mining for Financial Time Series Prediction,” IEEE Access, vol. 7, pp. 71645–71664, 2019, doi: 10.1109/ACCESS.2019.2919993.

Z. Berradi, M. Lazaar, O. Mahboub, and H. Omara, “A comprehensive review of artificial intelligence techniques in financial market,” in Colloquium in Information Science and Technology, CIST, Institute of Electrical and Electronics Engineers Inc., Jun. 2020, pp. 367–371. doi: 10.1109/CiSt49399.2021.9357175.

E. Chong, C. Han, and F. C. Park, “Deep Learning Networks for Stock Market Analysis and Prediction: Methodology, Data Representations, and Case Studies.”

W. Shi, L. Xu, and D. Peng, “Application of Deep Learning in Financial Management Evaluation,” Sci Program, vol. 2021, 2021, doi: 10.1155/2021/2475885.

W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time series using stacked autoencoders and long-short term memory,” PLoS One, vol. 12, no. 7, Jul. 2017, doi: 10.1371/journal.pone.0180944.

E. Chong, C. Han, and F. C. Park, “Deep Learning Networks for Stock Market Analysis and Prediction: Methodology, Data Representations, and Case Studies.”

S. Il Lee and S. J. Yoo, “Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets,” Mar. 2019, [Online]. Available: http://arxiv.org/abs/1903.06478

S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A Comparative Analysis of Forecasting Financial Time Series Using ARIMA, LSTM, and BiLSTM,” Nov. 2019, [Online]. Available: http://arxiv.org/abs/1911.09512

R. K. Sinha, R. Pandey, and R. Pattnaik, “Deep Learning For Computer Vision Tasks: A review.”

Z. Zeng, R. Kaur, S. Siddagangappa, S. Rahimi, T. Balch, and M. Veloso, “Financial Time Series Forecasting using CNN and Transformer,” Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.04912

E. Hoseinzade and S. Haratizadeh, “CNNPred: CNN-based stock market prediction using several data sources,” Oct. 2018, [Online]. Available: http://arxiv.org/abs/1810.08923

L. Di Persio and O. Honchar, “Artificial Neural Networks architectures for stock price prediction: comparisons and applications.”

J. Sen and S. Mehtab, “This is the accepted version in the IEEE Accurate Stock Price Forecasting Using Robust and Optimized Deep Learning Models.”

B. Via Tarissa and T. Dewayanto, “PENERAPAN MACHINE LEARNING DAN DEEP LEARNING PADA PENINGKATAN DETEKSI CREDIT CARD FRAUD-A SYSTEMATIC LITERATURE REVIEW,” DIPONEGORO JOURNAL OF ACCOUNTING, vol. 13, no. 3, pp. 1–15, 2024, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/accounting

W. Chen, W. Hussain, F. Cauteruccio, and X. Zhang, “Deep Learning for Financial Time Series Prediction: A State-of-the-Art Review of Standalone and Hybrid Models,” 2023, Tech Science Press. doi: 10.32604/cmes.2023.031388.

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep Learning for Computer Vision: A Brief Review,” 2018, Hindawi Limited. doi: 10.1155/2018/7068349.

Z. Zhang, X. Zhou, X. Zhang, L. Wang, and P. Wang, “A Model Based on Convolutional Neural Network for Online Transaction Fraud Detection,” Security and Communication Networks, vol. 2018, 2018, doi: 10.1155/2018/5680264.

C. Alkahfi, A. Kurnia, and A. Saefuddin, “Perbandingan Kinerja Model Berbasis RNN pada Peramalan Data Ekonomi dan Keuangan Indonesia,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 4, pp. 1235–1243, Jul. 2024, doi: 10.57152/malcom.v4i4.1415.

M. J. Hamayel and A. Y. Owda, “A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms,” AI (Switzerland), vol. 2, no. 4, pp. 477–496, Dec. 2021, doi: 10.3390/ai2040030.




DOI: https://doi.org/10.46576/djtechno.v6i1.6037

Article Metrics

Abstract view : 16 times
PDF – 10 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dara Sawitri

DJTECHNO: Jurnal Teknologi Informasi Indexed By


MEMBER OF


Dedicated to :

Djtechno: Jurnal Teknologi Informasi published by :

PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA

Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783  Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id

Djtechno: Jurnal Teknologi Informasi

Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License